Tutorial 07, parte 3: Iluminación Fotométrica

3dsmax_fotometricaEn el mundo real, la iluminación afecta nuestras vidas desde ángulos muy variados: permite distinguir siluetas y formas, afecta nuestros estados de ánimo (por ejemplo, las luces de una discoteca), nos alerta sobre peligros u otras indicaciones (semáforo, sirenas, etc.), nos entretiene, etc. Existen muchas fuentes de luz natural y artificial que nos generan muchas variables de iluminación. Intentar emular esas variables en un espacio 3D es el objetivo de las herramientas de iluminación en 3DSMAX. El programa basa a su representación de la iluminación en el ángulo que inciden los rayos en las caras de los objetos. Si este ángulo es perpendicular la iluminación es máxima, en ángulos menores esta irá decreciendo hasta desaparecer cuando los rayos queden tangentes a la superficie.

En esta tercera parte del tutorial de iluminación veremos las luces de tipo fotométrico y sus propiedades más importantes.

Luces fotométricas

Las luces fotométricas son tipos de luces que utilizan valores fotométricos (energía de luz) que permiten definir las luces con más precisión, igual que si fuesen reales. En ellas podemos definir la distribución, intensidad, temperatura de color y otras características propias de las luces reales. También se pueden importar archivos fotométricos específicos de fabricantes de luces para diseñar la iluminación de acuerdo con las luces disponibles en el mercado. Estos archivos poseen extensión IES.

A diferencia de las luces standard, las luces fotométricas utilizan valores reales de iluminación y por ende, podemos asignar valores en las unidades propias de Fotometría Internacional:

– Candelas.
– Luminancias o lumen.
– Luxes.

La Candela (símbolo cd) es la unidad básica del SI de intensidad luminosa, es decir, la energía emitida por una fuente de luz en una dirección particular, ponderado por la función de luminosidad. Una vela común emite luz con una intensidad lumínica de aproximadamente una candela. Si las emisiones en algunas direcciones es bloqueado por una barrera opaca, la emisión todavía sería de aproximadamente una candela en las direcciones que no están oscurecidas.

El Lumen (símbolo lm) es la unidad del Sistema Internacional de Medidas para medir el flujo luminoso y básicamente es una medida de la potencia luminosa emitida por la fuente. El flujo luminoso se diferencia del flujo radiante en que el primero contempla la sensibilidad variable del ojo humano a las diferentes longitudes de onda de la luz y el último involucra toda la radiación electromagnética emitida por la fuente sin considerar si tal radiación es visible o no.

El Lux (símbolo lx) es la unidad derivada del Sistema Internacional de Unidades para la iluminancia o nivel de iluminación y equivale a un lumen/m². Se usa en la fotometría como medida de la luminancia, tomando en cuenta las diferentes longitudes de onda según la función de luminosidad, un modelo estándar de la sensibilidad a la luz del ojo humano. El lux se define como la iluminación de 1 m por una fuente de luz que emite un flujo luminoso de 1 lumen.

La diferencia entre el lux y el lumen consiste en que el lux toma en cuenta la superficie sobre la que el flujo luminoso se distribuye. 1.000 lúmenes, concentrados sobre un metro cuadrado, iluminan esa superficie con 1.000 lux. Los mismos mil lúmenes, distribuidos sobre 10 metros cuadrados, producen una iluminancia de sólo 100 lux.

Si aplicamos esto en un ejemplo práctico, una iluminancia de 500 lux nos bastaría para iluminar una cocina con un simple tubo fluorescente. Pero si quisiéramos iluminar una fábrica al mismo nivel, se pueden requerir decenas de tubos. En otras palabras, iluminar un área mayor al mismo nivel de lux requiere un número mayor de lúmenes.

Podemos apreciar mejor esta diferencia en el siguiente esquema:

fotometria01

Diferencia entre Lumen y Lux, en 1 mde superficie.

Luces fotométricas en 3DSMAX

En 3DSMAX, las luces fotométricas comparten parámetros similares a las ya estudiadas luces standard como la atenuación lejana o el tipo de sombra, pero estas además tienen sus propias variables entre las cuales podemos destacar las siguientes:

Light distribution: especifica el tipo de distribución de la luz en la superficie o espacio. Esta puede ser de tipo red fotométrica o Photometric Web, Spotlight o Spot, Uniform Diffusse y Uniform Spherical:

3dsmax_gi009

Tipos de distribución de luz fotométrica. De izquierda a derecha: Photometric Web con un archivo IES cargado (donde notamos que la forma de la lámpara cambia), Spotlight, Uniform Spherical/diffuse y Photometric Web sin un archivo IES cargado.

fotometric000

Luz aplicada con distribución tipo Photometric Web, con un archivo IES cargado.

fotometric001

Luz aplicada con distribución tipo Spotlight.

fotometric001b

Luz aplicada con distribución tipo Uniform Diffuse.

fotometric001c

Luz aplicada con distribución tipo Uniform Spherical.

3dsmax_gi008Cuando estamos en el tipo de distribución llamado Photometric Web, podremos cargar archivos del fabricante de luces (usualmente de extensión IES) presionando el botón <point_street> (en las versiones antiguas de 3DSMAX) o en <Choose Photometric file> (en las versiones modernas) en la persiana Distribution (Photometric Web). Una vez que presionamos el botón podremos elegir el archivo IES que queramos y este se cargará en la luz, reemplazando a la “ampolleta” o forma de la lámpara que aparece por defecto, tal como se ve en la imagen de las distribuciones de luz de más arriba.

fotometric002

Luz aplicada con distribución tipo Photometric Web, con archivo IES cargado.

Intensity/color/attenuation: En este caso podremos asignar la cantidad de intensidad en las unidades lumínicas correspondientes (luminancias o lúmenes, candelas o luxes). El valor por defecto asignado es de unas 1.500 Candelas. También podemos elegir colores de luces provenientes de distintos tipos de configuraciones lumínicas como tubos fluorescentes, halógenos, lámparas incandescentes u otros. también podremos asignar el color de la luz según los grados Kelvin que establezcamos. Los valores de Kelvin fluctúan entre 1.000 y 20.000 y establecer el valor mínimo el mínimo implicará una luz muy cálida, mientras que el valor máximo será una luz muy fría. El valor por defecto de los grados Kelvin es 3.600.

fotometric003

Render aplicado con 1.000 Grados Kelvin.

fotometric003b

Render aplicado con 3.500 Grados Kelvin.

fotometric003c

Render aplicado con 10.000 Grados Kelvin.

fotometric003d

Render aplicado con 20.000 Grados Kelvin.

En el caso de la atenuación (Attenuation), podremos definir sólo la atenuación lejana (Far Attenuation) ya que en la realidad, no existe la atenuación cercana o Near Attenuation de la luz. Esta se configura de igual forma que con las luces standard.

Shape/Area Shadows: en esta opción podremos definir la forma en la que se proyecta la luz desde el emisor mediante la persiana Emit light from (shape). En esta tenemos las siguientes opciones:

– Point: proyecta una luz de punto, de forma similar a una ampolleta. Es la opción que viene por defecto y que utiliza la mayoría de los archivos IES al ser cargados.

fotometric004

– Line: proyecta la luz en forma lineal y es el ideal para simular, por ejemplo, tubos fluorescentes. Podremos configurar su largo mediante la opción Lenght.

fotometric004b

– Rectangle: proyecta la luz en forma de rectángulo. Podremos configurar el tamaño de este mediante las opciones Lenght y Width.

fotometric004c

– Disc: proyecta la luz en forma de disco. Podremos configurar su radio mediante la opción Radius.

fotometric004d

– Sphere: proyecta la luz en forma de esfera. Podremos configurar su radio mediante la opción Radius.

fotometric004e

– Cylinder: proyecta la luz en forma de cilindro. Podremos configurar su radio mediante la opción Radius y su altura mediante Height.

fotometric004f

fotometric007En los casos de distribución de tipo Rectangle, Disc, Sphere y cylinder podremos ver la forma de la distribución de la luz en el render si activamos la casilla Light Shape visible in Rendering.

fotometric008b

Render aplicado con Light Shape Visible in Rendering, con la distribución tipo Rectangle visible (Logarithmic Exposure Control activado).

fotometric008a

Render aplicado con Light Shape Visible in Rendering, con la distribución tipo Disc visible (Logarithmic Exposure Control activado).

fotometric008

Render aplicado con Light Shape Visible in Rendering, con la distribución tipo Sphere visible (Logarithmic Exposure Control activado).

Templates: en esta interesante opción podremos elegir de forma directa los tipos de configuraciones de luz realistas ya que tenemos por ejemplo las ampolletas de 40, 60 y 100 Watts, faros halógenos y otras luces exteriores y fuertes, como las luces de calle o incluso de un estadio.

fotometric005

Template 100W bulb (ampolleta de 100 watts).

fotometric005b

Template 4ft Cover Fluorescent (fluorescente).

fotometric005d

Template Street 400W Lamp (lámpara de calle de 400 watts).

fotometric005c

Template Stadium 1000W Lamp (lámpara de estadio de 1.000 watts).

Las luces fotométricas son recomendadas para ser utilizadas preferentemente con el motor de render Mental Ray ya que producen resultados más realistas y satisfactorios. También debemos tomar en cuenta que siempre debemos modelar nuestros objetos con medidas reales ya que las luces trabajan con estos valores y por ende los resultados son más precisos. Por último, en escenas interiores se recomienda aplicar GI mediante Mental Ray o Radiosity (Default Scanline Renderer) para generar la iluminación indirecta.

fotometric006

Render realizado con 4 luces fotométricas y aplicando el Plugin Radiosity.

fotometric006b

Render realizado con 4 luces fotométricas y aplicando GI de Mental Ray.


Bibliografía utilizada:

– Wikipedia en español: http://es.wikipedia.org.

– Web Iluminación Arquitectónica (imagen esquema Lumen/Lux):
http://editorial.cda.ulpgc.es/instalacion/7_OPTATIVAS/LAU/LAU0_introduccion/lau01_fundamentos.htm

– Tutorial GI Standard y Mental Ray del profesor Sebastián Huenchual H., Carrera Animación Digital 3D, Instituto DGM.

– 3DSMAX User Guide reference.

– Manuales USERS 3DSMAX por Daniel Venditti. Ediciones MP, Buenos Aires, Argentina.


Descargar Tutorial (PDF) y Archivos Base (MAX 2013):

3dsmax_download

3 Responses to Tutorial 07, parte 3: Iluminación Fotométrica

Deja un comentario

Ultimos Tutoriales AutoCAD 3D
  • Tutorial 08b: Extrude, Sweep y Revolve
    Tutorial 08b: Extrude, Sweep y Revolve
  • Tutorial 09: Render y GI, parte 3: Iluminación artificial
    Tutorial 09: Render y GI, parte 3: Iluminación artificial
  • Tutorial 10: Animación en AutoCAD, parte 2: Anipath (recorrido)
    Tutorial 10: Animación en AutoCAD, parte 2: Anipath (recorrido)
  • Tutorial 10: Animación en AutoCAD parte 1, Walk and Fly
    Tutorial 10: Animación en AutoCAD parte 1, Walk and Fly
  • Tutorial 09: Render y GI, parte 2: Sun & Sky
    Tutorial 09: Render y GI, parte 2: Sun & Sky
  • Tutorial 09: Render y GI, parte 1: Background
    Tutorial 09: Render y GI, parte 1: Background
  • Tutorial 11: Consejos para un buen modelo 3D
    Tutorial 11: Consejos para un buen modelo 3D
  • Tutorial 08: Polysolid y Loft
    Tutorial 08: Polysolid y Loft
Ultimos Tutoriales AutoCAD
  • Tutorial 09b: configuración de lámina e impresión final
    Tutorial 09b: configuración de lámina e impresión final
  • Tutorial 11, inserción de referencias (XREF)
    Tutorial 11, inserción de referencias (XREF)
  • Tutorial 09a: Escalas de Ventanas gráficas
    Tutorial 09a: Escalas de Ventanas gráficas
  • Tutorial 10: Bloques dinámicos en AutoCAD (parte 2)
    Tutorial 10: Bloques dinámicos en AutoCAD (parte 2)
  • Tutorial 10: Bloques dinámicos en AutoCAD (parte 1)
    Tutorial 10: Bloques dinámicos en AutoCAD (parte 1)
  • Tutorial 09: layout y escalas de impresión
    Tutorial 09: layout y escalas de impresión
  • Tutorial 08: grupos y bloques
    Tutorial 08: grupos y bloques
  • Tutorial 07: Areas o Hatch
    Tutorial 07: Areas o Hatch
Ultimos Tutoriales Comandos
  • Tutorial 13: comandos Mirror y Offset
    Tutorial 13: comandos Mirror y Offset
  • Tutorial 11: El comando Arc
    Tutorial 11: El comando Arc
  • Tutorial 10: comandos circle y ellipse
    Tutorial 10: comandos circle y ellipse
  • Tutorial 08: El comando Rectangle
    Tutorial 08: El comando Rectangle
  • Tutorial 12: comandos Move y Copy
    Tutorial 12: comandos Move y Copy
  • Tutorial 09: el comando Polygon
    Tutorial 09: el comando Polygon
  • Tutorial 05: el comando Line
    Tutorial 05: el comando Line
Ultimos Tutoriales 3DSMAX
  • Tutorial 08b: mr Portal Sky (iluminación interior con Mental Ray)
    Tutorial 08b: mr Portal Sky (iluminación interior con Mental Ray)
  • Tutorial 06c: Materiales Arch & Design (Mental Ray)
    Tutorial 06c: Materiales Arch & Design (Mental Ray)
  • Tutorial 06b: Material Multi/Sub-object
    Tutorial 06b: Material Multi/Sub-object
  • Tutorial 07, parte 2: Sombreados en iluminación
    Tutorial 07, parte 2: Sombreados en iluminación
  • Tutorial 07, parte 3: Iluminación Fotométrica
    Tutorial 07, parte 3: Iluminación Fotométrica
  • Tutorial 03b: Herramienta Array (matriz)
    Tutorial 03b: Herramienta Array (matriz)
  • Tutorial 03a: Spacing Tool (espaciado)
    Tutorial 03a: Spacing Tool (espaciado)
  • Tutorial 10: Animación básica
    Tutorial 10: Animación básica
Tutoriales Rhinoceros 4
  • Tutorial 07: modelado mediante Rail Revolve
    Tutorial 07: modelado mediante Rail Revolve
  • Tutorial 06: inserción de referencias (blueprints)
    Tutorial 06: inserción de referencias (blueprints)
  • Tutorial 05: modelado mediante Loft
    Tutorial 05: modelado mediante Loft
  • Tutorial 04: modelado mediante puntos de control (artefacto)
    Tutorial 04: modelado mediante puntos de control (artefacto)
  • Tutorial 00b: herramientas de matriz
    Tutorial 00b: herramientas de matriz
  • Tutorial 00a: concepto y uso de layers
    Tutorial 00a: concepto y uso de layers
  • Tutorial 04a: Trabajo con puntos de control
    Tutorial 04a: Trabajo con puntos de control
  • Tutorial 03: modelado mediante puntos de control
    Tutorial 03: modelado mediante puntos de control
Translate MVBlog to
Encuesta
Su software favorito para 3D es...
AutoCAD
3DSMAX
Rhinoceros
Revit
ArchiCAD
View Result
See all polls and results
Archivo de MVBlog
Posts por Categoría o Curso
LinkedIn del autor
Currículum Vitae
Ver el perfil de Carlos Gonzalez Larenas en LinkedIn
MVBlog en Facebook
MVBlog en Google+
MVBlog en Twitter
MVBlog en Pinterest
Tráfico del Blog

Visitas

Páginas|Hits |Visitas

  • Últimas 24 horas: 0
  • Últimos 7 días: 1,107
  • Últimos 30 días: 3,694
  • Online ahora: 0