Tutoriales y apuntes recomendados

Tutorial 14: Inserción de referencias o XREF, aplicado en 3D

Como ya lo hicimos anteriormente en el tutorial correspondiente a AutoCAD 2D, definiremos como referencias externas o "XREFs" a archivos específicos que cumplen la función de servir como guía, calco o referencia para realizar dibujos complejos. Estos archivos pueden ser de imagen, del mismo software (DWG) o también de otros programas similares como Microstation. También explicamos el cómo se realizaban bloques o dibujos complejos utilizando esta técnica, pero en este nuevo tutorial llevaremos el concepto de XREF a la aplicación práctica en la gestión y modelado de proyectos tridimensionales. XREF nos servirá de sobremanera en proyectos 3D de carácter complejo ...

Leer más...

AutoCAD 2D Tutorial 06b, Cota Leader

Como sabemos, dibujar en AutoCAD tiene como fin llevar lo dibujado en la pantalla a la realidad mediante la construcción de una pieza, una máquina, un producto o un proyecto de Arquitectura. Para que eso sea posible, la teoría del dibujo técnico establece dos requisitos indispensables que deben cumplirse si se ha dibujado algo que ha de fabricarse en un taller (si es una pieza, máquina o un producto) o construirse en un terreno, si es que hablamos de una edificación: - Que las vistas del dibujo no permitan dudas respecto a su forma. - Que la descripción de su tamaño sea ...

Leer más...

Maquetería 04: Introducción y tipos de maquetas

Concepto de maquetería Definiremos como Maquetería al arte de fabricar maquetas. A partir de esto definiremos una "maqueta" como una representación tridimensional o 3D de un objeto o evento. La maqueta puede ser funcional o no y además puede representar eventos u objetos reales o ficticios: Maqueta de una escena ferroviaria, en escala H0 (1:87). En este tipo de maquetas los trenes y las señales ferroviarias funcionan gracias a un complejo sistema eléctrico. Maqueta de la X-Wing de Star Wars, en escala 1:29. Este tipo de maquetas poseen funciones como abrir la cabina, mover las alas o una base para exhibición. La maqueta generalmente se suele ...

Leer más...

Maquetería 06: Materiales para maquetería

Uno de los fines de la maquetería es la representación de los proyectos y/o elementos de la forma más realista posible. Por esto mismo es que los materiales que se utilicen deben emular de la mejor forma posible la materialidad, texturas o colores del proyecto original como por ejemplo el concreto, el vidrio o la madera. Los materiales utilizados para la construcción de maquetas son muy variados, y de hecho prácticamente cualquier material puede utilizarse para este fin. Sin embargo en el mercado encontraremos varios materiales especialmente creados para este arte. Los materiales principales utilizados son los siguientes: El Cartón El cartón es ...

Leer más...

Comandos AutoCAD Tutorial 03: helpers o ayudantes de dibujo

En AutoCAD ya hemos aprendido las unidades básicas de dibujo y las cuatro formas en que podemos realizar estos en el programa. Sin embargo, dibujar elementos y formas complejos es algo difícil ya que el espacio donde trabajamos es un plano de carácter “ilimitado” y por ello es difícil colocar límites claros para nuestro trabajo y además de eso, es difícil dibujar "a pulso" en el programa sin cometer errores. Por esto mismo, AutoCAD pone a nuestra disposición una serie de ayudantes para nuestros dibujos llamados Helpers, de modo de facilitar la ejecución de estos y por ende, ahorrar tiempo ...

Leer más...

Comandos AutoCAD Tutorial 04: referencia a objetos (OSNAPS)

Si bien en un tutorial anterior estudiamos el concepto de coordenadas X e Y en AutoCAD y que evidentemente el programa lo sigue utilizando como base para el dibujo 2D y 3D, estas fueron pensadas originalmente para equipos sin las capacidades de hoy en día, cuando las primeras versiones de AutoCAD sólo tenían textos y la famosa barra de comandos. En ese entonces los comandos e instrucciones se ejecutaban exclusivamente desde el teclado escribiendo el nombre del comando en la barra y luego presionando la tecla enter. Gracias al avance de la informática y por ende del programa mismo, hoy ...

Leer más...

Comandos AutoCAD Tutorial 12: comandos Move y Copy

En este tutorial veremos los diferentes comandos de transformaciones move y copy en AutoCAD los cuales, como sus nombres lo indican, nos permitirán desplazar y/o copiar uno o más objetos hacia cualquier posición del área de dibujo. Además veremos aplicaciones exclusivas del comando copy como Array, el cual nos permitirá no solo copiar una gran cantidad de elementos sino que también nos permite distribuirlos en torno a un elemento o distancia. El comando Move Un comando importantísimo en AutoCAD es el llamado mover o simplemente move. Move nos permitirá mover desde una posición a otra uno o más elementos del dibujo sean estos ...

Leer más...

Comandos AutoCAD Tutorial 15: el comando Array

En este nuevo tutorial veremos otro de los comandos más versátiles de AutoCAD, ya que se trata del comando llamado array o lo que es lo mismo, la copia de objetos mediante matrices o arreglos las cuales permiten distribuir copias en el espacio y pueden ser de tipo rectangular, polar o en referencia a un recorrido o también llamado path. En este artículo veremos los tres tipos de matriz que posee el comando array además de aplicaciones exclusivas (mediante ejemplos y archivos) de este comando, e información complementaria respecto a su uso en el dibujo 2D y en otro tipo de ...

Leer más...

AutoCAD 2D Tutorial 06: Acotación y estilos de cota

Como sabemos, dibujar en AutoCAD tiene como fin llevar lo dibujado de la pantalla a la realidad mediante la construcción de una pieza, una máquina, producto o un proyecto de Arquitectura. Para que eso sea posible, la teoría del dibujo técnico establece dos requisitos indispensables que deben cumplirse si se ha dibujado algo que ha de fabricarse en un taller (si es una pieza, máquina o un producto) o construirse en un terreno, si es que hablamos de una edificación: - Que las vistas del dibujo no permitan dudas respecto a su forma. - Que la descripción de su tamaño sea exacta. ...

Leer más...

AutoCAD 2D Tutorial 09: layout y diseño para impresión

El final de cualquier dibujo que realicemos en AutoCAD se refleja siempre en el dibujo impreso. Para los arquitectos, por ejemplo, AutoCAD es ideal para la elaboración de planos, auténtica materia prima para su trabajo en el desarrollo y supervisión de una construcción. Sin embargo, AutoCAD es además una excelente herramienta para el diseño, lo que implica que solamente nos concentraremos en realizar el dibujo sin preocupaciones, ya que no importa si los dibujos están o no dispuestos de manera adecuada para elaboración del soporte (plano) ya que para esto tenemos el layout, el cual nos permitirá configurar el dibujo ...

Leer más...

Dibujo Técnico: tipos de perspectivas

Acerca de las perspectivas Para la representación de objetos en el dibujo técnico se utilizan diversas proyecciones que se traducen en vistas de un objeto o proyecto, las cuales suelen ser los planos o vistas 3D que nos permiten la interpretación y construcción de este. El dibujo técnico consiste en esencia en representar de forma ortogonal varias vistas cuidadosamente escogidas, con las cuales es posible definir de forma precisa su forma, dimensiones y características. Además de las vistas tradicionales en 2D se utilizan proyecciones tridimensionales representadas en dos dimensiones llamadas perspectivas. Los cuatro tipos de perspectivas base son: Isométrica (ortogonal) Militar (oblicua) Caballera (oblicua) Cónica ...

Leer más...

Dibujo Técnico: convenciones sobre el dibujo de Arquitectura

Acerca del dibujo arquitectónico Como ya sabemos, la expresión gráfica que se utiliza en la Arquitectura está definida por un conjunto de especificaciones y normas y a la vez estas son parte de lo que conocemos como dibujo técnico. El ojo humano está diseñado para ver en 3 dimensiones: largo, alto y ancho. Sin embargo, estas sufren distorsión dependiendo de la distancia y la posición donde esté situada la persona respecto al objeto que se observa. Por lógica no podríamos construir ese objeto si lo dibujásemos “tal cual” lo vemos, ya que para ello fuera posible el objeto tendría que mantener su ...

Leer más...

Dibujo Técnico: tipos de línea, grosores y usos

Las líneas en Arquitectura y en Ingeniería Las líneas en arquitectura y en dibujo técnico cumplen un papel fundamental en la representación de nuestro proyecto, pues nos permiten definir las formas y las simbologías precisas para la correcta interpretación y posterior construcción de este. Sin los distintos tipos de línea nuestro dibujo se parecería más a un dibujo artístico y sin los grosores, nuestro dibujo pasaría a ser plano y no sería comprendido en su totalidad por el ejecutante o constructor. Las líneas se clasifican, según la NCh657, en los siguientes tipos y clases: Los tipos de líneas se usan según los ...

Leer más...

Dibujo Técnico: la escala y sus aplicaciones

La escala de los planos Como ya sabemos, si dibujamos un proyecto de arquitectura o un objeto grande es imposible que lo podamos hacer "a tamaño real" pues los formatos de papel son limitados a un ancho máximo de 1,2 mts, y además por razones prácticas (tamaño, peso, transporte y portabilidad) y de lectura es inviable. Plano en tamaño real de Vardehaugen. A pesar de ser un concepto muy interesante y bonito de apreciar, nos muestra el problema de "dibujar" un proyecto en su tamaño verdadero. Si por el contrario dibujamos un objeto muy pequeño en un papel tenemos un problema similar, ya ...

Leer más...

AutoCAD 3D Tutorial 02: Modelado 3D con primitivas (templo griego)

Uno de los principios básicos del modelado 3D es que todos los objetos que existen en la realidad y en la naturaleza nacen a partir de las llamadas "primitivas". Una primitiva se define como la geometría 3D o Poliedros básicos que pueden representarse tridimensionalmente mediante maquetas físicas o virtuales. Una de las características más importantes de estas es que si estas se modifican y/o editan ya sea mediante adición de estas, sustracción u otras acciones, van definiendo formas mucho más complejas. Por esto mismo y al igual que en cualquier otro programa 3D, en AutoCAD existen geometrías 3D llamadas “primitivas básicas” ...

Leer más...

AutoCAD 3D Tutorial 11: Consejos para un buen modelo 3D

En este tutorial se pretende dar consejos para realizar una buena gestión del modelado 3D en AutoCAD sin morir en el intento (o lo que es igual, sin que nuestro computador colapse y/o que nuestro archivo 3D pese demasiados megas). Estos consejos están basados fundamentalmente en mi experiencia como docente y sobre todo como modelador y animador 3D, y la idea es que estos les sean útiles para todos quienes quieran gestionar de forma eficiente sus modelos 3D en AutoCAD, o para quienes están comenzando a realizar sus primeros proyectos. Para el correcto modelado 3D es necesario seguir ciertas pautas o ...

Leer más...

AutoCAD 3D Tutorial 13: UCS, aplicación en modelado 3D

En esta ocasión y dado que hacía mucho tiempo que no se realizaba un tutorial sobre modelado en AutoCAD 3D, hoy nos corresponde mostrar uno de los comandos más eficientes y a la vez de los menos utilizados en el mundo del 3D de AutoCAD: se trata del comando llamado UCS o "User Coordinate System" ya que este es un sistema que nos permite modificar la posición del sistema standard de los ejes coordenados (X,Y,Z), para adaptarlo a cualquier lugar y/o posición para así facilitar el modelado y/o adición o sustraccion de elementos. En esta ocasión modelaremos la estructura en ...

Leer más...

Planimetría 01: Planta de Arquitectura

Definiremos la planta de Arquitectura como un CORTE de tipo HORIZONTAL del edificio o proyecto mediante un plano virtual el cual a su vez remueve la parte superior del edificio. Este corte se realiza usualmente a 1,20 o 1,40 mts y nos sirve para definir la estructura y los espacios principales del proyecto o edificación, en su largo y ancho. La planta es fundamental para comprender un proyecto pues las proporciones y dimensiones de esta son la base para la construcción de este. El concepto queda graficado en el siguiente ejemplo: En el caso de la planta en particular, al estar el plano ...

Leer más...

Planimetría 02: Corte de Arquitectura

Podemos definir un corte de Arquitectura como una sección o "corte" (valga la redundancia) mediante un plano VERTICAL de una edificación, edificio o proyecto de Arquitectura, y nos sirve para definir la relación de escala, proporción, alturas y los elementos estructurales del proyecto frente al contexto. A diferencia de la planta, el corte puede en teoría efectuarse en cualquier parte del proyecto y por ello deberá definirse mediante una señalización de este en la planta y además tener un "sentido", es decir, una dirección hacia donde queremos visualizar los elementos del corte mismo. Este concepto se puede graficar mediante el siguiente ...

Leer más...

Planimetría 03: Elevaciones en Arquitectura

Definiremos como elevaciones a las proyecciones ortogonales bidimensionales de TODAS las caras visibles de un proyecto, vivienda o edificio, utilizando la ya conocida proyección ortogonal de puntos. Estas caras se proyectan en planos imaginarios paralelos a la cara en cuestión y por ello, pueden ser representadas mediante planos bidimensionales. Las elevaciones también se denominan fachadas o alzados. El concepto de las elevaciones puede graficarse en el siguiente esquema: En el esquema notamos que el Norte geográfico está representado en el modelo ya que el nombre de cada cara dependerá de su ubicación geográfica respecto al terreno. El resultado de la proyección de cada ...

Leer más...

Planimetría 04: Representación en planos de muros, puertas y ventanas

En este apunte se muestran las representaciones de los principales objetos en una planta de Arquitectura, en base principalmente a la NCh745 para el caso de las puertas y ventanas. Cabe destacar que estas normas son válidas tanto para el dibujo a mano como mediante software. Representación de muros en planta y corte En el caso de la Arquitectura la representación de muros más utilizada es la línea de contorno sin relleno. Esta debe ir valorizada según la importancia jerárquica o estructural del elemento. Este tipo de representación es válido tanto en planta como en cortes de un proyecto. Los ejemplos de abajo ...

Leer más...

AutoCAD 3D Tutorial 06: Operaciones con sólidos

En el mundo real, los objetos 3D y los elementos orgánicos e inorgánicos están formados a partir de la adición, sustracción, edición y/o modificación de cuerpos geométricos 3D básicos conocidos como primitivas. como en todo programa 3D que se precie, AutoCAD dispone de varias primitivas las cuales son: Caja (Box), Cilindro (Cylinder), Esfera (Sphere), Cono (Cone), Pirámide (Pyramid), Cuña (Wedge), Dona (Torus) y el Plano 2D (comando plane o planesurf según la versión de AutoCAD). Y además tenemos la función Polisólido (polysolid), el cual se trata en profundidad en el Tutorial 08.

Al igual que en la realidad, la deformación y manipulación de estas formas nos permitirán ir construyendo nuestros modelos 3D en AutoCAD. AutoCAD 3D posee varias herramientas que nos permitirán realizar varias operaciones con los sólidos para modificar su forma y/o editarlos, las cuales podemos apreciar en el siguiente menú, el cual se obtiene al ir a la persiana solid del modo 3D Modeling:

botones_edicionsolidos

Los comandos principales y operaciones de este menú se irán viendo en este tutorial.

Operaciones Booleanas (Boolean)

Las operaciones Booleanas nos permitirán añadir o quitar porciones de cualquier sólido para definir nuestros objetos. Antes de prodecer con las booleanas debemos asegurarnos de lo siguiente:

– Los elementos deben estar siempre traslapados, o de lo contrario no funcionarán. En el caso de Union, pueden estar uno junto al otro.

Las operaciones booleanas disponibles son las siguientes:

Union (comando union o UNI): une un sólido con otro para formar un solo elemento. Para activarlo ejecutamos el comando y presionamos enter, luego elegimos las formas a unir y presionamos enter para finalizar.

booleanboolean_union

En el ejemplo se ha unificado en un solo elemento la caja y el cilindro.

Diferencia o Resta (comando subtract o SU): resta un sólido respecto a otro. Para activarlo ejecutamos el comando y presionamos enter, pero en este caso primero seleccionaremos el objeto que se conservará y presionamos enter, luego elegiremos el o los que serán restados, para finalizar con enter.

booleanboolean_subtract

En el ejemplo se ha sustraido el cilindro a la caja. En el caso de subtract, los resultados son diferentes según se elija primero la caja o el cilindro.

Intersección (comando intersect o IN): remueve ambos sólidos pero deja la porción común entre ambos sólidos. En este caso elegiremos las formas a intersectar y presionamos enter para finalizar. Intersect sólo funciona con dos formas traslapadas.

booleanboolean_intersection

En el ejemplo se ha obtenido la porción traslapada que compertían la caja y el cilindro mediante el comando Intersect.

Corte (Slice)

Slice nos permite cortar el sólido en la forma que queramos. Para ejecutar el comando escribimos slice (o también SL), luego elegimos el sólido y luego presionamos enter. Nos aparecerá el siguiente menú de opciones:

botones_slice

Donde tenemos lo siguiente:

Planar Object (O): usa una forma 2D rectangular o curva cerrada para cortar el sólido a través del área virtual formada entre el sólido y la forma. Por esto es que la forma 2D debe atravesar todo el sólido para que funcione. Al activar la opción, elegimos primero mediante un click la forma 2D y luego presionamos enter para finalizar el comando.

slice01b_planarobjectslice01b_planarobject2 

Surface (S): esta opción es similar a planar Object pero en este caso utiliza una superficie 2D que atraviesa el sólido para cortarlo. Al activar la opción, elegimos primero la superficie 2D (mediante un click) y luego presionamos enter para finalizar el comando.

slice01b_surface slice01b_surface2

Zaxis (Z): esta opción permite cortar el sólido de forma perpendicular a la línea normal del eje. Al activar la opción, debemos elegir mediante un click el punto desde donde comenzará el corte y después el punto final. El sólido se cortará mediante un plano perpendicular a esta línea previamente definida.

slice01b_zaxis slice01b_zaxis2

View (V): esta opción permite cortar el sólido en un plano paralelo a la vista o perspectiva en la que observamos el objeto. Al activar la opción, debemos elegir mediante un click el punto desde donde comenzará el corte y luego presionamos enter. El sólido se cortará mediante un plano paralelo a la vista.

slice01b_viewslice01b_view2

XY: corta el sólido aplicando el plano XY en cualquier altura a partir de un punto definido dentro o fuera del objeto. Al activar la opción, debemos elegir mediante un click el punto desde donde comenzará el corte y después presionar enter para ver el resultado.

slice01b_xy slice01b_xy2

YZ: corta el sólido aplicando el plano YZ en cualquier punto dentro o fuera de este, siempre y cuando la cara del sólido no sea paralela a este plano. Al activar la opción, debemos elegir mediante un click el punto desde donde comenzará el corte y luego presionamos enter para ver el resultado.

slice01b_yz

slice01b_yz2

ZX: corta aplicando el plano ZX en cualquier punto dentro o fuera de este, siempre y cuando la cara del sólido no sea paralela a este plano. Al activar la opción, debemos elegir mediante un click el punto desde donde comenzará el corte y luego presionamos enter para ver el resultado.

slice01b_zx slice01b_zx2

3points (3): esta es la opción por defecto y nos permite cortar el sólido mediante 3 puntos cualquiera que elijamos siempre y cuando estos formen un plano virtual. En este caso basta elegir mediante click cada uno de los 3 puntos y luego presionamos enter para ver el resultado.

slice01 slice01b_3points

Thicken (Extruir superficies)

Esta operación sólo funciona en superficies 2D, y nos permite extruirlas y por ello convertirla a 3D definiendo una altura. Para activarlo escribimos thicken (o THI) y presionamos enter, luego elegimos la superficie a extruir y presionamos enter, luego definimos la altura y luego enter para finalizar el comando.o THI

thickenthicken2

Interfere (interferir)

interfere interfere_check

Esta operación crea un sólido temporal el cual es la intersección entre dos sólidos. Este puede ser visualizado y también extraído formando un nuevo sólido 3D. Para activarlo escribimos interfere (o INTERF) y presionamos enter, luego elegimos los objetos y presionamos dos veces enter para finalizar el comando.

Si ejecutamos el comando y no presionamos enter antes o después de elegir los objetos nos aparecen las siguientes opciones:

Nested selection (N): selecciona las formas 3D.

Settings (S): podremos modificar el color del sólido resultante, el estilo visual y destacar la interferencia.

interfere_settings

Luego de editar estas opciones aparecen otras que son:

interfere_settings2

Check first set (K): con esta opción podemos revisar el sólido intersectado. En previous veremos la malla del sólido resultante y en next la visualización por defecto, además que podremos realizar Zoom, Pan u Orbit mediante los botones del lado derecho. Si desmarcamos la opción “Delete interference objects created on Close” se creará en 3D el sólido de la intersección, aunque los objetos 3D originales permanecerán sin cambios.

interfere_check2interfere_final

Imprint (imprimir en una cara)

Esta operación imprime una forma 2D en un sólido siempre y cuando ambos estén en el mismo plano. Para ejecutarlo primero escribimos imprint (o IMPR) y presionamos enter, luego elegimos el objeto 3D, seguimos con la forma 2D y finalmente el programa nos pregunta si borramos el objeto de origen. Si lo hacemos correctamente, se creará la impresión de la forma 2D en la cara del sólido y a su vez será una nueva cara de este.

imprintimprint2

Círculo impreso en la cara de la caja mediante IMPRINT.

El mismo ejemplo anterior pero con IMPRINT ya aplicado. La impresión genera dos nuevas caras las cuales pueden modificarse (en este ejemplo se ha aplicado el comando PRESSPULL).

Extract Edge (extraer lado)

Esta operación nos permite extraer los lados de cualquier sólido 3D los cuales se convierten en líneas. Para ejecutarlo primero escribimos xedges (o XE) y presionamos enter, luego elegimos el o los objetos 3D y finalizamos el comando con enter. Si lo hacemos correctamente, todos los lados se habrán extraído sin afectar al sólido 3D.

extract_edgesextract_edges2

Offset Edge (equidistar lado)

Esta operación es similar al comando offset ya que nos permite crear polilíneas equidistantes en uno o más lados de la cara de la forma 3D. Para ejecutarlo escribimos offsetedge (u OFFSETE) en la barra de comandos y luego elegimos con un click cualquier cara del sólido. Luego definimos un punto cualquiera de la cara el cual será la distancia y finalizamos el comando con enter.

offset_edge

Antes de definir el punto tenemos las siguientes opciones disponibles:

Distance (D): podemos definir la distancia del offset y el punto hacia  dónde va la nueva forma, de forma similar a offset normal. si la distancia es negativa, las líneas se formarán fuera del lado.

offset_edgeb_distance

Corner (C): permite definir el tipo de esquina. Por defecto es la opción Sharp (S) pero si elegimos Round (R), las esquinas serán curvadas de forma proporcional a la distancia, pero sólo cuando el offset está fuera del objeto.

offset_edgeb_corner_round

Fillet Edge (redondear lado)

Esta operación es similar al comando fillet ya que nos permite redondear una o más aristas de la forma 3D. Para ejecutarlo escribimos filletedge (o FILLETE) en la barra de comandos y presionamos enter, luego elegimos con un click cualquier arista del sólido y luego finalizamos el comando con enter.

fillet_edge

Al igual que con Offset Edge tenemos las siguientes opciones disponibles:

Chain (C): podemos elegir los lados de forma manual, a nuestro gusto. Una vez definida la cadena, presionamos enter para aceptar y terminar la operación.

fillet_edge_chainfillet_edge_chain2

Loop (L): podemos definir un loop o ciclo de aristas de forma automática. Por defecto tomará una cara completa del elemento 3D. Una vez definido el ciclo, presionamos enter para aceptar y terminar la operación.

fillet_edge_loopfillet_edge_loop2

Radius (R): esta opción permite definir o cambiar el radio del redondeo. Después de escribir la opción y presionar enter el programa nos pedirá el nuevo radio. También podremos realizar esto antes de terminar el comando si tomamos la flecha azul, luego escribimos el radio y finalizamos con enter.

fillet_edge_loop_radius

Chamfer Edge (achaflanar lado)

Esta operación es similar al comando chamfer ya que nos permite achaflanar una o más aristas de la forma 3D. Para ejecutarlo escribimos chamferedge (o CHAMFERE) en la barra de comandos y presionamos enter, luego elegimos con un click una o más aristas del sólido y luego finalizamos el comando con enter.

chamfer_edge

Al igual que con Fillet Edge tenemos las siguientes opciones disponibles:

Loop (L): podemos definir un loop o ciclo de aristas de forma automática. Por defecto tomará una cara completa del elemento 3D. Si queremos elegir los lados de forma manual podemos cambiar a la opción Edge (E), pero esto funcionará sólo dentro del loop.

chamfer_edge_loopchamfer_edge_loop2

Distance (D): esta opción permite definir o cambiar las distancias del chaflán. Después de escribir la opción y presionar enter el programa nos pedirá la distancia 1 y luego la distancia 2. Al igual que con Fillet Edge podremos realizar esto antes de terminar el comando tomando las flechas azules y definiendo las distancias.

chamfer_edge_loop_edgechamfer_edge_loop_edge2

Extrude Faces (Extruir caras)

Esta operación es similar al comando extrude ya que nos permite extruir una o más caras de la forma 3D. Para ejecutarlo se debe clickear en la opción Extrude Faces en el menú puesto que no posee un comando propio en la barra de comandos ya que este es parte del comando general solidedit (el cual se verá más abajo), luego elegimos con un click una o más caras del sólido, presionamos enter y definimos una distancia para la extrusión (o elegimos dos puntos), presionamos enter y luego definimos un ángulo de extrusión para luego finalizar el comando con enter.

extrude_facesextrude_faces2_angulo10

Antes de fijar la distancia de extrusión tenemos las siguientes opciones:

Undo (U): deshace la última acción de selección.
ALL: selecciona todas las caras.
Remove (R): podemos remover una o más caras de la selección.

La altura de extrusión puede definirse mediante una distancia o simplemente dos puntos, y además tenemos una tercera opción llamada path (recorrido). En cuanto a las distancias es interesante consignar que dependiendo del valor que le demos al ángulo la extrusión irá hacia adentro o hacia afuera. Si el ángulo es 0, la extrusión es recta (de forma similar al comando extrude) pero si el ángulo es positivo la extrusión irá hacia adentro, por ende los ángulos negativos harán que la extrusión vaya hacia afuera. En cuanto a la distancia, si es negativa la extrusión será hacia el interior del objeto 3D y si es positiva será hacia afuera.

extrude_faces2_angulo10

Extrusión con ángulo positivo.

extrude_faces2_angulo-10

Extrusión con ángulo negativo.

Una opción interesante de este comando es Path (P), la cual nos permite tomar una línea como referencia para la extrusión lo que hará que el sentido y la altura de esta sea la del recorrido. Para ello vamos a la opción path, seleccionamos la línea y al hacer click se ejecutará la extrusión de manera automática.

extrude_faces2_pathextrude_faces2_path2

Offset Faces (Desplazar caras)

Esta operación es similar al comando Extrude Faces ya que nos permite desplazar una o más caras de la forma 3D, y con ello se modificará todo el sólido. Para ejecutarlo se debe clickear en la opción Offset Faces en el menú puesto que no posee un comando propio en la barra de comandos ya que este es parte del comando general solidedit (el cual se verá más abajo), luego elegimos con un click una o más caras del sólido, presionamos enter y definimos una distancia para la extrusión (o elegimos dos puntos) para luego finalizar el comando con enter. Antes de fijar la distancia de extrusión tenemos las mismas opciones que en el caso de Extrude Faces (Undo, ALL, Remove). En cuanto a la distancia, si es negativa el desplazamiento será hacia el interior del objeto 3D y si es positiva será hacia afuera.

offset_facesoffset_faces2

Taper Faces (Estrechar caras)

Esta operación nos permite estrechar una o más caras de la forma 3D mediante el giro de estas, y con ello se modificará todo el sólido. Para ejecutarlo se debe clickear en la opción Taper Faces en el menú puesto que no posee un comando propio en la barra de comandos ya que este es parte del comando general solidedit (el cual se verá más abajo), luego elegimos con un click una o más caras del sólido, presionamos enter y definimos primero el punto base para el pivote de la cara y luego el punto final, luego el programa nos pedirá un ángulo de rotación y finalizamos el comando con enter. Antes de fijar la distancia de extrusión tenemos las mismas opciones que en el caso de Extrude Faces (Undo, ALL, Remove).

taper_facestaper_faces2

En este ejemplo se toma como línea de pivote los puntos marcados en las imágenes. El primer punto (imagen izquierda) es el punto base de pivote.

Al igual que en el caso de Extrude Faces, el ángulo influye en el resultado de la operación. Si este es positivo el giro será contrarreloj respecto del punto base, y si es negativo será a favor de este.

taper_faces3

Taper con ángulo positivo, respecto al ejemplo de arriba.

taper_faces4

Taper con ángulo negativo, respecto al ejemplo de arriba.

Shell (Cáscara)

Esta operación es similar al comando Offset Edge pero Shell nos permitirá definir el espacio interno de un sólido 3D ya que mueve todas las caras al mismo tiempo y por ello nos dará un grosor. Para ejecutarlo se debe clickear en la opción Shell en el menú puesto que no posee un comando propio en la barra de comandos ya que este es parte del comando general solidedit (el cual se verá más abajo), luego elegimos con un click sólido, presionamos enter y definimos una distancia para el shell, y luego finalizamos el comando con enter. Antes de fijar la distancia de extrusión tenemos las mismas opciones que en el caso de Extrude Faces (Undo, ALL, Remove). En cuanto a la distancia, si es negativa el espacio vacío será definido por el tamaño del sólido 3D y el grosor irá hacia afuera y si es positiva se formará el espacio interno, y el grosor irá hacia adentro del sólido.

shellshell2

En el ejemplo, la distancia es positiva y por ende el grosor va hacia adentro de la caja.

Separate (Separar sólidos)

Cuando realizamos operaciones booleanas como subtract y por ende cortamos objetos 3D, usualmente el sólido se selecciona como un solo elemento a pesar de estar separado, tal como se ve en las imágenes siguientes:

separateseparate02

Con Separate podremos convertir los sólidos resultantes en formas 3D independientes. Para ejecutarlo se debe clickear en la opción Separate en el menú puesto que no posee un comando propio en la barra de comandos ya que este es parte del comando general solidedit (el cual se verá más abajo), luego elegimos con un click sólido, presionamos enter y volvemos a confirmar con enter para finalizar el comando. Notaremos ahora que el sólido está separado en formas independientes.

separate03

Check (Revisar)

Esta opción nos permite revisar si la geometría 3D es válida o no. Lo ejecutamos presionando el ícono Check y luego seleccionando el sólido, para luego finalizar el chequeo con enter.

Clean (Limpiar)

Esta opción nos permite limpiar el sólido de caras, aristas y vértices duplicados o redundantes (ideal cuando hay errores de sólidos). Lo ejecutamos presionando el ícono Clean y luego seleccionando el sólido, para luego finalizar el chequeo con enter.

Comando Solidedit

Como se vio en el caso de Taper faces, Check o Clean, algunas operaciones con sólidos no tienen un comando propio sino que son parte de un comando más amplio llamado solidedit (o editsolido en español). Este comando posee todas las operaciones de sólidos vistas antes pero incorpora otras funciones nuevas. Lo ejecutamos escribiendo en la barra de comandos solidedit y presionamos enter. Nos aparecen las opciones de la imagen de abajo donde podremos elegir el nivel de subobjeto en el que queremos trabajar:

Face (F): toma una o más caras del objeto.
Edge (E): toma una o más lados del objeto.
Body (B): toma el cuerpo del objeto.
Undo (U): deshacer.
Exit (X): salir de solidedit.

Para el caso de los sólidos 3D nos conviene elegir Edge o Face según corresponda. al elegir la opción nos aparece el menú de abajo donde veremos las funciones ya conocidas como taper, offset y otras nuevas funciones:

botones_soledit

Donde tenemos lo siguiente:

Copy (C): copia una cara o lado. Se ejecuta de forma similar al comando copy pues elegimos  punto base y luego el punto final donde va la copia.

solidedit_copysolidedit_copy2

Move (M): mueve una cara o lado. Se ejecuta de forma similar al comando move pues elegimos  punto base y luego el punto final donde va la copia. Esta operación deformará la figura y por lo tanto afectará a todo el sólido.

solidedit_movesolidedit_move2

Rotate (R): rota la cara según una línea base y un ángulo. Si este es positivo irá hacia la izquierda (contrarreloj) y si es negativo hacia la derecha. Una vez que elegimos esta opción elegimos la o las caras y presionamos enter, procedemos a definir dos puntos para formar la línea que será el eje del pivote, aunque además tendremos la opción de rotar en la vista (V), en el eje X, eje Y, eje Z y el eje del objeto (A).

solidedit_rotatesolidedit_rotate2

En el ejemplo la cara ha sido rotada con un ángulo de -50. Esta operación afectará a la forma final.

Delete (D): si tenemos una forma modificada con operaciones como extrude, fillet o chamfer, podremos borrar las acciones anteriores de estos ejecutados en esa cara o en el sólido completo. Para activarlo elegimos la opción delete, seleccionamos la cara a modificar y presionamos enter para ver el resultado.

solidedit_deletesolidedit_delete2

Color (L): en esta opción podremos cambiar el color en una o más caras del objeto. Elegimos color y luego seleccionamos las caras, presionamos enter y nos aparecerá la paleta de colores donde podremos cambiar al color que queramos.

solidedit_color solidedit_color2

Material (A): esta opción es similar a color pero funciona con los materiales aplicados, ya que podremos cambiar el material en una o más caras del objeto. Elegimos material y luego seleccionamos la o las caras, presionamos enter y el programa nos pedirá el nombre del nuevo material, el cual deberá escribirse con el mismo nombre que tiene en el editor de materiales (Material Browser). Finalmente presionamos enter para cancelar el comando.

solidedit_materialsolidedit_material2

Como acabamos de ver, las operaciones de sólidos son fundamentales para el modelado ya su dominio nos permitirá generar formas más complejas a partir de primitivas simples, lo que es el principio del modelado 3D.

Este es el fin de este tutorial.

Temas y Tutoriales relacionados

Print Friendly, PDF & Email
[Total: 0    Average: 0/5]

6 Responses to AutoCAD 3D Tutorial 06: Operaciones con sólidos

  • EDGAR MATEUS says:

    muy buenos ejercicios , excelente explicacion y las graficas ayudan a entender bien el contenido de la misma.

  • nahita says:

    hola, tengo un problema con mi icono taper faces, tengo ya dos dias tratando de usarlo y no me deja, ya no hace la inclinacion que le pido por ejemplo a 45º pero no lo hace, tu puedes ayudarme?

  • Johnny Quijano says:

    Buenas Tardes un buen post te felicito
    Pero quisiera saber si hay la forma de poder poner nombre a los solidos 3D

    si me dejo entender tengo un proyecto X; en lo cual tengo varios [Caja (Box)] la cual son de diferentes medidas tanto en altura y tamaño que se usa como bases de para bombas, equipos, etc… lo queremos hacer es colocar los nombre individual a acaba box ejemplo: “base 110_01” , “base 110_02”,etc ….. para identificar ya que son proyectos grandes lo que se hace en la empresa que laboro. Por favor espero su respuesta lo antes posible

    Bueno si hay un Autolisp o Plugin

    • Estimado, desafortunadamente aún no existe la forma de hacerlo de forma directa en AutoCAD (sólo se puede en 3DSMAX) pero es probable que haya algún plugin o rutina que lo haga. Saludos.

Deje un comentario en este artículo

Publicidad
Otras webs del autor

TFCatalog.cl es un blog donde se revisan periódicamente figuras (juguetes) del universo Transformers, además de ser un catálogo personalizado de colección la cual está categorizada según línea.

http://www.tfcatalog.cl
Donar a MVBlog

Si le gusta esta web puede ayudar a mejorar su contenido, su calidad y a mantener activo este proyecto mediante su donación vía Paypal.

 
 

Publicidad
Suscríbase a MVBlog y reciba los últimos tutoriales, noticias y posts acerca de CAD, 3D y dibujo:
Gracias a FeedBurner
Reserve Hoteles

Si gusta de viajar, reserve alojamiento en booking.com y así ayuda a colaborar con este proyecto:
booking.com

Translate MVBlog to
Buscar en Google


Encuesta

El tema que más le interesa del blog es...

View Results

Loading ... Loading ...
Publicidad
Ultimos Apuntes
Ultimos AutoCAD
Ultimos Tutoriales 3D
Bibliografía (al azar)
Publicidad
Archivo de MVBlog
Tráfico del blog
  • 297693Total Visitas:
  • 378Visitas hoy:
  • 1478Visitas ayer:
  • 8552Visitas semana:
  • 14549Visitas por mes:
  • 1,168Visitas por día:
  • 5Visitantes online:
  • 17/03/2018Inicio: