Tutoriales y apuntes recomendados

Tutorial 14: Inserción de referencias o XREF, aplicado en 3D

Como ya lo hicimos anteriormente en el tutorial correspondiente a AutoCAD 2D, definiremos como referencias externas o "XREFs" a archivos específicos que cumplen la función de servir como guía, calco o referencia para realizar dibujos complejos. Estos archivos pueden ser de imagen, del mismo software (DWG) o también de otros programas similares como Microstation. También explicamos el cómo se realizaban bloques o dibujos complejos utilizando esta técnica, pero en este nuevo tutorial llevaremos el concepto de XREF a la aplicación práctica en la gestión y modelado de proyectos tridimensionales. XREF nos servirá de sobremanera en proyectos 3D de carácter complejo ...

Leer más...

AutoCAD 2D Tutorial 06b, Cota Leader

Como sabemos, dibujar en AutoCAD tiene como fin llevar lo dibujado en la pantalla a la realidad mediante la construcción de una pieza, una máquina, un producto o un proyecto de Arquitectura. Para que eso sea posible, la teoría del dibujo técnico establece dos requisitos indispensables que deben cumplirse si se ha dibujado algo que ha de fabricarse en un taller (si es una pieza, máquina o un producto) o construirse en un terreno, si es que hablamos de una edificación: - Que las vistas del dibujo no permitan dudas respecto a su forma. - Que la descripción de su tamaño sea ...

Leer más...

Maquetería 04: Introducción y tipos de maquetas

Concepto de maquetería Definiremos como Maquetería al arte de fabricar maquetas. A partir de esto definiremos una "maqueta" como una representación tridimensional o 3D de un objeto o evento. La maqueta puede ser funcional o no y además puede representar eventos u objetos reales o ficticios: Maqueta de una escena ferroviaria, en escala H0 (1:87). En este tipo de maquetas los trenes y las señales ferroviarias funcionan gracias a un complejo sistema eléctrico. Maqueta de la X-Wing de Star Wars, en escala 1:29. Este tipo de maquetas poseen funciones como abrir la cabina, mover las alas o una base para exhibición. La maqueta generalmente se suele ...

Leer más...

Maquetería 06: Materiales para maquetería

Uno de los fines de la maquetería es la representación de los proyectos y/o elementos de la forma más realista posible. Por esto mismo es que los materiales que se utilicen deben emular de la mejor forma posible la materialidad, texturas o colores del proyecto original como por ejemplo el concreto, el vidrio o la madera. Los materiales utilizados para la construcción de maquetas son muy variados, y de hecho prácticamente cualquier material puede utilizarse para este fin. Sin embargo en el mercado encontraremos varios materiales especialmente creados para este arte. Los materiales principales utilizados son los siguientes: El Cartón El cartón es ...

Leer más...

Comandos AutoCAD Tutorial 03: helpers o ayudantes de dibujo

En AutoCAD ya hemos aprendido las unidades básicas de dibujo y las cuatro formas en que podemos realizar estos en el programa. Sin embargo, dibujar elementos y formas complejos es algo difícil ya que el espacio donde trabajamos es un plano de carácter “ilimitado” y por ello es difícil colocar límites claros para nuestro trabajo y además de eso, es difícil dibujar "a pulso" en el programa sin cometer errores. Por esto mismo, AutoCAD pone a nuestra disposición una serie de ayudantes para nuestros dibujos llamados Helpers, de modo de facilitar la ejecución de estos y por ende, ahorrar tiempo ...

Leer más...

Comandos AutoCAD Tutorial 04: referencia a objetos (OSNAPS)

Si bien en un tutorial anterior estudiamos el concepto de coordenadas X e Y en AutoCAD y que evidentemente el programa lo sigue utilizando como base para el dibujo 2D y 3D, estas fueron pensadas originalmente para equipos sin las capacidades de hoy en día, cuando las primeras versiones de AutoCAD sólo tenían textos y la famosa barra de comandos. En ese entonces los comandos e instrucciones se ejecutaban exclusivamente desde el teclado escribiendo el nombre del comando en la barra y luego presionando la tecla enter. Gracias al avance de la informática y por ende del programa mismo, hoy ...

Leer más...

Comandos AutoCAD Tutorial 12: comandos Move y Copy

En este tutorial veremos los diferentes comandos de transformaciones move y copy en AutoCAD los cuales, como sus nombres lo indican, nos permitirán desplazar y/o copiar uno o más objetos hacia cualquier posición del área de dibujo. Además veremos aplicaciones exclusivas del comando copy como Array, el cual nos permitirá no solo copiar una gran cantidad de elementos sino que también nos permite distribuirlos en torno a un elemento o distancia. El comando Move Un comando importantísimo en AutoCAD es el llamado mover o simplemente move. Move nos permitirá mover desde una posición a otra uno o más elementos del dibujo sean estos ...

Leer más...

Comandos AutoCAD Tutorial 15: el comando Array

En este nuevo tutorial veremos otro de los comandos más versátiles de AutoCAD, ya que se trata del comando llamado array o lo que es lo mismo, la copia de objetos mediante matrices o arreglos las cuales permiten distribuir copias en el espacio y pueden ser de tipo rectangular, polar o en referencia a un recorrido o también llamado path. En este artículo veremos los tres tipos de matriz que posee el comando array además de aplicaciones exclusivas (mediante ejemplos y archivos) de este comando, e información complementaria respecto a su uso en el dibujo 2D y en otro tipo de ...

Leer más...

AutoCAD 2D Tutorial 06: Acotación y estilos de cota

Como sabemos, dibujar en AutoCAD tiene como fin llevar lo dibujado de la pantalla a la realidad mediante la construcción de una pieza, una máquina, producto o un proyecto de Arquitectura. Para que eso sea posible, la teoría del dibujo técnico establece dos requisitos indispensables que deben cumplirse si se ha dibujado algo que ha de fabricarse en un taller (si es una pieza, máquina o un producto) o construirse en un terreno, si es que hablamos de una edificación: - Que las vistas del dibujo no permitan dudas respecto a su forma. - Que la descripción de su tamaño sea exacta. ...

Leer más...

AutoCAD 2D Tutorial 09: layout y diseño para impresión

El final de cualquier dibujo que realicemos en AutoCAD se refleja siempre en el dibujo impreso. Para los arquitectos, por ejemplo, AutoCAD es ideal para la elaboración de planos, auténtica materia prima para su trabajo en el desarrollo y supervisión de una construcción. Sin embargo, AutoCAD es además una excelente herramienta para el diseño, lo que implica que solamente nos concentraremos en realizar el dibujo sin preocupaciones, ya que no importa si los dibujos están o no dispuestos de manera adecuada para elaboración del soporte (plano) ya que para esto tenemos el layout, el cual nos permitirá configurar el dibujo ...

Leer más...

Dibujo Técnico: tipos de perspectivas

Acerca de las perspectivas Para la representación de objetos en el dibujo técnico se utilizan diversas proyecciones que se traducen en vistas de un objeto o proyecto, las cuales suelen ser los planos o vistas 3D que nos permiten la interpretación y construcción de este. El dibujo técnico consiste en esencia en representar de forma ortogonal varias vistas cuidadosamente escogidas, con las cuales es posible definir de forma precisa su forma, dimensiones y características. Además de las vistas tradicionales en 2D se utilizan proyecciones tridimensionales representadas en dos dimensiones llamadas perspectivas. Los cuatro tipos de perspectivas base son: Isométrica (ortogonal) Militar (oblicua) Caballera (oblicua) Cónica ...

Leer más...

Dibujo Técnico: convenciones sobre el dibujo de Arquitectura

Acerca del dibujo arquitectónico Como ya sabemos, la expresión gráfica que se utiliza en la Arquitectura está definida por un conjunto de especificaciones y normas y a la vez estas son parte de lo que conocemos como dibujo técnico. El ojo humano está diseñado para ver en 3 dimensiones: largo, alto y ancho. Sin embargo, estas sufren distorsión dependiendo de la distancia y la posición donde esté situada la persona respecto al objeto que se observa. Por lógica no podríamos construir ese objeto si lo dibujásemos “tal cual” lo vemos, ya que para ello fuera posible el objeto tendría que mantener su ...

Leer más...

Dibujo Técnico: tipos de línea, grosores y usos

Las líneas en Arquitectura y en Ingeniería Las líneas en arquitectura y en dibujo técnico cumplen un papel fundamental en la representación de nuestro proyecto, pues nos permiten definir las formas y las simbologías precisas para la correcta interpretación y posterior construcción de este. Sin los distintos tipos de línea nuestro dibujo se parecería más a un dibujo artístico y sin los grosores, nuestro dibujo pasaría a ser plano y no sería comprendido en su totalidad por el ejecutante o constructor. Las líneas se clasifican, según la NCh657, en los siguientes tipos y clases: Los tipos de líneas se usan según los ...

Leer más...

Dibujo Técnico: la escala y sus aplicaciones

La escala de los planos Como ya sabemos, si dibujamos un proyecto de arquitectura o un objeto grande es imposible que lo podamos hacer "a tamaño real" pues los formatos de papel son limitados a un ancho máximo de 1,2 mts, y además por razones prácticas (tamaño, peso, transporte y portabilidad) y de lectura es inviable. Plano en tamaño real de Vardehaugen. A pesar de ser un concepto muy interesante y bonito de apreciar, nos muestra el problema de "dibujar" un proyecto en su tamaño verdadero. Si por el contrario dibujamos un objeto muy pequeño en un papel tenemos un problema similar, ya ...

Leer más...

AutoCAD 3D Tutorial 02: Modelado 3D con primitivas (templo griego)

Uno de los principios básicos del modelado 3D es que todos los objetos que existen en la realidad y en la naturaleza nacen a partir de las llamadas "primitivas". Una primitiva se define como la geometría 3D o Poliedros básicos que pueden representarse tridimensionalmente mediante maquetas físicas o virtuales. Una de las características más importantes de estas es que si estas se modifican y/o editan ya sea mediante adición de estas, sustracción u otras acciones, van definiendo formas mucho más complejas. Por esto mismo y al igual que en cualquier otro programa 3D, en AutoCAD existen geometrías 3D llamadas “primitivas básicas” ...

Leer más...

AutoCAD 3D Tutorial 11: Consejos para un buen modelo 3D

En este tutorial se pretende dar consejos para realizar una buena gestión del modelado 3D en AutoCAD sin morir en el intento (o lo que es igual, sin que nuestro computador colapse y/o que nuestro archivo 3D pese demasiados megas). Estos consejos están basados fundamentalmente en mi experiencia como docente y sobre todo como modelador y animador 3D, y la idea es que estos les sean útiles para todos quienes quieran gestionar de forma eficiente sus modelos 3D en AutoCAD, o para quienes están comenzando a realizar sus primeros proyectos. Para el correcto modelado 3D es necesario seguir ciertas pautas o ...

Leer más...

AutoCAD 3D Tutorial 13: UCS, aplicación en modelado 3D

En esta ocasión y dado que hacía mucho tiempo que no se realizaba un tutorial sobre modelado en AutoCAD 3D, hoy nos corresponde mostrar uno de los comandos más eficientes y a la vez de los menos utilizados en el mundo del 3D de AutoCAD: se trata del comando llamado UCS o "User Coordinate System" ya que este es un sistema que nos permite modificar la posición del sistema standard de los ejes coordenados (X,Y,Z), para adaptarlo a cualquier lugar y/o posición para así facilitar el modelado y/o adición o sustraccion de elementos. En esta ocasión modelaremos la estructura en ...

Leer más...

Planimetría 01: Planta de Arquitectura

Definiremos la planta de Arquitectura como un CORTE de tipo HORIZONTAL del edificio o proyecto mediante un plano virtual el cual a su vez remueve la parte superior del edificio. Este corte se realiza usualmente a 1,20 o 1,40 mts y nos sirve para definir la estructura y los espacios principales del proyecto o edificación, en su largo y ancho. La planta es fundamental para comprender un proyecto pues las proporciones y dimensiones de esta son la base para la construcción de este. El concepto queda graficado en el siguiente ejemplo: En el caso de la planta en particular, al estar el plano ...

Leer más...

Planimetría 02: Corte de Arquitectura

Podemos definir un corte de Arquitectura como una sección o "corte" (valga la redundancia) mediante un plano VERTICAL de una edificación, edificio o proyecto de Arquitectura, y nos sirve para definir la relación de escala, proporción, alturas y los elementos estructurales del proyecto frente al contexto. A diferencia de la planta, el corte puede en teoría efectuarse en cualquier parte del proyecto y por ello deberá definirse mediante una señalización de este en la planta y además tener un "sentido", es decir, una dirección hacia donde queremos visualizar los elementos del corte mismo. Este concepto se puede graficar mediante el siguiente ...

Leer más...

Planimetría 03: Elevaciones en Arquitectura

Definiremos como elevaciones a las proyecciones ortogonales bidimensionales de TODAS las caras visibles de un proyecto, vivienda o edificio, utilizando la ya conocida proyección ortogonal de puntos. Estas caras se proyectan en planos imaginarios paralelos a la cara en cuestión y por ello, pueden ser representadas mediante planos bidimensionales. Las elevaciones también se denominan fachadas o alzados. El concepto de las elevaciones puede graficarse en el siguiente esquema: En el esquema notamos que el Norte geográfico está representado en el modelo ya que el nombre de cada cara dependerá de su ubicación geográfica respecto al terreno. El resultado de la proyección de cada ...

Leer más...

Planimetría 04: Representación en planos de muros, puertas y ventanas

En este apunte se muestran las representaciones de los principales objetos en una planta de Arquitectura, en base principalmente a la NCh745 para el caso de las puertas y ventanas. Cabe destacar que estas normas son válidas tanto para el dibujo a mano como mediante software. Representación de muros en planta y corte En el caso de la Arquitectura la representación de muros más utilizada es la línea de contorno sin relleno. Esta debe ir valorizada según la importancia jerárquica o estructural del elemento. Este tipo de representación es válido tanto en planta como en cortes de un proyecto. Los ejemplos de abajo ...

Leer más...

AutoCAD 3D Tutorial 10: Animación en AutoCAD, parte 2: Anipath (recorrido)

Desde los tiempos primitivos el hombre ha intentado representar el movimiento, pasando por diferentes inventos que van desde el zootropo hasta llegar a los dibujos animados modernos. Valiéndose del principio físico de la persistencia de la visión, es decir, en que el cerebro humano retiene durante unas fracciones de segundo la imagen que captan sus ojos, los cineastas descubrieron que al ver una secuencia de imágenes a gran velocidad, el cerebro no es capaz de individualizarlas y por ende, este crea la ilusión de movimiento continuo. Esta secuencia de imágenes a gran velocidad es lo que conocemos como animación.

En este tutorial aprenderemos a realizar animaciones de recorrido mediante el comando anipath de AutoCAD, y además crearemos (y guardaremos) vídeos en relación a ello. También veremos las distintas calidades de vídeo y formatos específicos de renderizado para estas.

Para el correcto desarrollo de este tutorial se necesitará un archivo específico, el cual puede ser descargado en este enlace.

Concepto de Cuadros por segundo o FPS (Frames Per Second)

En animación, cada una de las imágenes estáticas que la componen se denomina cuadro o frame, y la fluidez de esta dependerá de la cantidad de imágenes “en un segundo” que “pasen” ante nuestros ojos.

El concepto de “cuadros por segundo” o Frames Per Second (FPS) nos indica precisamente el número de imágenes que se muestran en un segundo de tiempo. Este formato se utiliza en cine y en televisión, y dependiendo del lugar geográfico se establece según los siguientes sistemas de televisión analógica:

NTSC (National Television System Committee)
Norte y la mayor parte de sudamérica, Japón, Chile.
29,97 FPS (se asume 30 FPS).
PAL (Phase Alternating Line)
Europa, Asia, Argentina, Brasil y algunos países de centroamérica.
25 FPS.
SECAM (Séquentiel Couleur à Mémoire)
Francia.
25 FPS.
FILM
Formato para cine.
24 FPS.

La animación en AutoCAD

A diferencia de programas para renderizado como 3DSMAX, AutoCAD no es un programa optimizado para animación ya que es más bien un programa técnico donde la precisión es lo más importante, y por ello los comandos de animación que tiene son muy limitados y además suelen estar ocultos en el programa. Por lo tanto, debemos invocarlos mediante su nombre respectivo o el icono correspondiente. Para acceder al grupo de los comandos de animación iremos al espacio de trabajo (workspace) 3D Modeling y lo llamaremos clickeando con el botón secundario del mouse en cualquier parte de los grupos de la persiana Visualize (Render), y presionando el botón secundario del mouse elegiremos Show Panels >> Animation tal como se aprecia en las imágenes de abajo:

acad_animacion00

Llamado al grupo de animación mediante el mouse en AutoCAD 2013 y 2017 respectivamente.

Al activarlos aparecen los controles respectivos de animación donde podremos animar un modelo 3D de tres formas diferentes las cuales son:

– Walk (caminar).
– Fly (volar).
– Animation Motion Path (Animación por recorrido en movimiento).

En el primer tutorial sobre animación ya vimos la opción Walk and Fly. Por ello, en este tutorial ocuparemos el comando llamado Animation Motion Path. En este caso utilizaremos el archivo terminado y mejorado del Tutorial 02 (templo griego) el cual abriremos en el programa. Si lo renderizamos, el resultado debe ser algo similar a la imagen de abajo:

Ahora animaremos el templo mediante mediante Animation Motion Path o también conocido como el comando anipath. Como su nombre lo indica, para realizar este tipo de animación necesitaremos una o la unión de varias líneas: una curva abierta o una forma cerrada (llamada Path) que nos servirá como recorrido, y una cámara virtual desde la cual enfocarán los objetos para realizar la animación la cual es insertada de manera automática por el comando. Si ejecutamos el comando anipath y luego presionamos enter, obtendremos el siguiente cuadro:

Este cuadro se denomina Motion Path Animation (Animacion de movimiento por recorrido). Antes de proceder a efectuar la animación respectiva, primeramente debemos entender el lado izquierdo del cuadro. Este nos indica que la “cámara virtual” que nos inserta anipath puede ser enlazada a dos elementos geométricos diferentes:

1) un punto cualquiera en el espacio (point).
2) un recorrido (path), el cual puede ser cualquier forma abierta o cerrada. Si el recorrido se realiza mediante líneas o line, este deberá ser unificado mediante join.

Y respecto a la cámara virtual misma, podemos enlazar tanto esta (camera) como el objetivo al cual apunta (target) a los elementos geométricos anteriores. Por ello, las posibles combinaciones que podemos realizar mediante estos enlaces son las siguientes:

a) Enlazar camera a path y target a point.
b) Enlazar camera a point y target a path.
c) Enlazar camera a path y target a nada (none).
d) Enlazar camera y target al mismo path.

Enlazar camera y target a point no es posible ya que no habría animación, puesto que la cámara y el target siempre estarían fijos. De este análisis se desprende que los tipos de animación de cámara que podremos realizar mediante anipath son los siguientes:

1 – La cámara se moverá por el recorrido o path, mientras que el target (objetivo) se mantendrá fijo en un punto y apuntará hacia el o los objetos enfocados. Esto se conoce como giro o recorrido de cámara.

2 – La cámara permanece fija en un punto y sólo el target u objetivo se moverá a través del recorrido o path. Esto se conoce como recorrido panorámico o paneo.

3 – Tanto la cámara como el objetivo se moverán por el mismo recorrido o path. Esto se conoce como cámara libresubjetiva o de primera persona.

4- La cámara y el objetivo se mueven por diferentes recorridos o paths. Esto se conoce como travelling.

En este tutorial veremos todos estos tipos.

Opciones de Motion Path Animation

Antes de crear las animaciones pertinentes, podremos configurar los parámetros de estas mediante las siguientes opciones del cuadro Motion Path Animation:

Frame Rate (FPS): con esta opción elegiremos la unidad o sistema en que queremos trabajar nuestra animación sea NTSC, PAL, FILM o la cantidad de FPS que deseemos.

Number of frames/Duration (seconds): con esta opción elegiremos la unidad de tiempo ya sea en cantidad de frames o cuadros, o en el tiempo de duración (en segundos) que queremos para nuestra animación. Si elegimos aumentar la cantidad en Duration, automáticamente se ajustará la cantidad de frames en Number of frames, y visceversa.

Visual Style: en esta opción elegiremos cómo queremos que se vea nuestra animación ya que tendremos todas las opciones de estilos visuales e incluso podremos “renderizar” la animación de forma sencilla al elegir la opción Rendered. Si elegimos la opción As displayed, la animación se renderizará según el estilo visual que tengamos activo en la viewport.

Debemos tener cuidado con esta opción puesto que si queremos testear la animación y tenemos activados los materiales, luces, sombras, GI y elegimos Rendered, la animación se demorará muchísimo más que si elegimos otro estilo visual. Para testear animaciones se recomienda la elección de estilos visuales más simples como Hidden, Conceptual o Realistic.

También podremos configurar la calidad del render en la animación y esta influirá en la calidad de la imagen y en el tiempo de renderizado. Para las versiones antigua de AutoCAD, Draft es la más básica y rápida mientras que Presentation es la mejor pero la más demorosa. En la versión moderna (2016 en adelante) tenemos las opciones Low (baja), Medium (media) y High (alta).

Format: en esta opción elegimos el formato de salida para nuestro vídeo: WMV (Windows Media Video), MOV (Apple, formato obsoleto en las versiones nuevas de AutoCAD), MPG (DVD) o AVI (Video Digital). Los formatos más aceptados para vídeo son MPG y AVI, mientras que el formato WMV se puede usar para testeos de animaciones debido a su bajo peso.

Resolution: aquí elegimos el tamaño del vídeo. Mientras más pequeño (160 x 120) el vídeo se creará más rápido pero al aumentar de tamaño se verá pixelado y si es más grande (1024 x 768) se demorará más, aunque se verá mucho mejor. Por ello se recomiendan tamaños pequeños para pruebas o testeos mientras que los mayores son para la animación definitiva.

Reverse: si activamos esta opción, la animación tomará el otro extremo del recorrido o invertirá la vuelta si es una forma cerrada.

Corner Deceleration: esta opción desacelera automáticamente la animación al llegar a las esquinas de un recorrido para efectuar transiciones suavizadas. Si lo desactivamos se creará un recorrido continuo en estas.

When Previewing show camera preview: esta opción nos permite ver la previa de la animación en la ventana de Animation Preview. Si la desactivamos no podremos verla.

Una vez estudiados estos parámetros procederemos a crear las animaciones respectivas tomando como referencia nuestro templo griego ya modelado. Si estudiamos más en profundidad el archivo veremos que está estructurado mediante varios layers que hacen referencia a las animaciones que crearemos, y que además estos poseen los recorridos respectivos los cuales iremos ocultando o desocultando mediante los comandos hide y unhide respectivamente, según cada tipo de animación que realicemos.

1) Creando un giro o recorrido de cámara

Antes de comenzar necesitaremos una línea o forma cerrada que nos sirva como referencia para realizar el recorrido de nuestra cámara o target. Estas líneas pueden ser rectas, curvas o formas cerradas como una elipse, círculo o un rectángulo. Si establecemos varias líneas al mismo tiempo debemos asegurarnos que se dibujen mediante polyline o si las dibujamos con line las unifiquemos con el comando join para que anipath considere todo el recorrido. Para nuestro ejercicio, activaremos el layer llamado recorrido recto y notaremos que hay una polilínea y un rectángulo. La idea es ocultar este último mediante el comando hide y mantener la polilínea recta que forma el recorrido abierto, como se aprecia en la secuencia siguiente:

Una vez realizado esto, lo siguiente es ejecutar el comando anipath en la barra de comandos o también presionar el botón Animation Motion Path:

Al hacerlo, nos aparece el cuadro Motion Path Animation ya visto:

Como vemos, el cuadro nos muestra las opciones de “linkeo” o link to tanto de la cámara “física” (camera) como del target u objetivo. Ahora debemos realizar lo siguiente: en Link Camera To marcaremos la opción Path (recorrido) y presionamos el cuadro del lado derecho señalado en verde:

Esta acción nos permitirá volver al espacio de trabajo y elegir la línea o recorrido que queremos asignar a nuestra animación. Elegiremos mediante click el recorrido respectivo:

Luego de realizar esto volveremos a Motion Path Animation, donde ahora se nos muestra un nuevo cuadro llamado Path Name. Este cuadro nos pedirá asignar un “nombre” a nuestro recorrido y podemos renombrarlo o dejarlo por defecto (Path 1).

Lo que en realidad hemos hecho con esta operación es decirle al comando que coloque la cámara física o camera en el recorrido y por ello, esta lo recorrerá al iniciar la animación tomando como referencia el primer punto con el que comenzamos a dibujar nuestro recorrido. Ahora iremos a la opción Link target to y cambiaremos su opción a Point, y presionamos el cuadro del lado derecho (en verde):

Esta acción nos permitirá volver al espacio de trabajo y elegir un punto cualquiera del espacio ya que este representará al “target” u objetivo al cual apuntará nuestra cámara. Con nuestro archivo abierto, elegiremos mediante click el punto intersección de las dos líneas dibujadas debajo de nuestro templo, indicadas en verde:

Luego de realizado esto volveremos a Motion Path Animation, donde ahora se nos muestra un nuevo cuadro llamado Point Name. Este cuadro este nos pedirá asignar un “nombre” a nuestro punto y podremos renombrarlo o dejarlo por defecto (Point 1).

Lo que en realidad hemos hecho con esta operación es decirle al comando que el target u objetivo apunte hacia las coordenadas del punto que hemos definido, y por ello permanecerá fijo al iniciar la animación.

Para finalizar y crear la primera animación del tutorial configuraremos lo siguiente: activaremos la casilla Corner Deceleration, dejaremos la opción Conceptual en visual style, el tiempo lo dejaremos en 10 segundos o 300 frames, elegiremos el formato AVI, dejaremos la resolución en 320 x 240 y realizaremos la vista previa de la animación mediante preview. Una vez que terminemos de ver la animación en la ventana, la cerramos para volver al cuadro de Motion Path Animation. Ahora presionamos en OK para guardar la animación, y nos aparece el cuadro final de guardado:

En este cuadro basta indicar el nombre de archivo y la ruta en que guardaremos nuestro vídeo. Si nos equivocamos al configurar la animación o no lo hicimos en el cuadro anterior, podremos volver a hacerlo presionando en el botón Animation Settings. Ahora sólo es cosa de presionar Save y con esto ya creamos nuestro vídeo. Ahora se nos muestra el cuadro de progreso que indica la cantidad de frames que se van creando y cuánto falta para terminar el vídeo. Como este vídeo inicial no está renderizado se creará de forma más o menos rápida.

El resultado de la animación es el siguiente, en modo Conceptual:

Ahora realizaremos otro ejercicio usando el rectángulo oculto. Para esto, lo desocultamos mediante el comando unhide y luego ocultamos el recorrido abierto mediante hide.

Si realizamos la vista previa de la animación utilizando este como path, el recorrido de la cámara será una vuelta completa. El resultado de la animación de este nuevo ejercicio es el siguiente, en modo Conceptual:

Si realizamos los dos ejercicios y abrimos cada video con un reproductor notaremos que las animaciones no son muy buenas pues al ser rectas las líneas, los quiebres en las esquinas son muy notorios y se desaceleran al llegar a estas, y por ello son muy molestos en la animación final. Si realizamos nuevamente ambas animaciones pero desactivamos la opción Corner Deceleration en el cuadro Animation Motion Path, el resultado es el siguiente:

Animación del recorrido abierto con Corner Deceleration desactivado.

Animación del recorrido cerrado con Corner Deceleration desactivado.

En este caso el recorrido es continuo y ya no es tan molesto al pasar la cámara por las esquinas del recorrido, sin embargo notaremos que las formas rectas no son lo ideal para realizar animaciones puesto que no son suaves y por lo tanto, sólo se recomiendan para ciertos tipos de enfoques o movimientos de cámara como los travellings.

Como consejo general, para obtener una buena animación se recomienda lo siguiente:

– Si establecemos un o más recorridos cerrados, es preferible establecer como paths formas curvas cerradas 2D como circle, arc o ellipse.
– Si establecemos uno o más recorridos abiertos, preferentemente debemos utilizar las curvas realizadas mediante el comando spline, ya que estas nos crearán recorridos mucho más suaves y realistas que si los realizáramos con formas rectas como un rectángulo o las líneas que acabamos de realizar.
– Si establecemos uno o más recorridos mediante líneas rectas, debemos mejorarlas redondeando sus bordes mediante comandos como fillet, ya que esto suavizará el recorrido.
– Es mejor desactivar la opción Corner Deceleration para que la animación sea continua entre las curvas.

Ahora visualizaremos esto en el siguiente ejercicio: apagamos el layer recorrido recto y ahora activamos el layer recorrido recto con fillet. si observamos bien notaremos que son las mismas líneas de los ejercicios anteriores pero esta vez se les ha aplicado fillet. Ahora tomaremos las curvas de la imagen y ocultarlas mediante hide:

Ahora nos bastará con repetir el proceso de creación de la animación en la curva respectiva y desactivar la opción Corner Deceleration. Configuraremos los parámetros de la animación de la misma manera en que lo hicimos con los primeros ejercicios.

El resultado de la animación es el siguiente:

Ahora haremos lo mismo con el rectángulo primero desocultando todo mediante unhide y luedo ocultando todos los recorridos abiertos. Repetiremos el proceso de creación de la animación y desactivamos la opción Corner Deceleration. Configuraremos los parámetros de la animación de la misma manera en que lo hicimos con los primeros ejercicios.

El resultado de la animación es el siguiente:

Como los recorridos son formas editables podremos transformarlos mediante comandos como 3DMove o move para cambiar la altura de la elevación y por ello el ángulo en que la cámara enfoca los objetos. La idea de esto es lograr otras perspectivas para nuestra animación y enriquecer esta. En nuestro archivo notamos que al desocultar todo nuevamente, tenemos tres recorridos abiertos los cuales son copias y están a diferentes alturas. Podemos ir ocultando o desocultando estos para ir testeando las distintas animaciones que se forman en función de la posición de estos en el eje Z, tal como se aprecia en los siguientes ejemplos:

El recorrido abierto del primer ejercicio pero en este caso este está en Z=0 (se ha desactivado la opción Corner Deceleration):

Arriba, la animación resultante de esta operación.

El recorrido abierto del primer ejercicio pero en este caso este está bajo el plano XY y por ello, bajo Z=0 (se ha desactivado la opción Corner Deceleration):

Arriba, la animación resultante de esta operación.

Con estos principios básicos podremos crear tantas animaciones como queramos además de colocar más recorridos en una misma escena y, por ejemplo, jugar con los atributos de las curvas Spline para crear recorridos que no sólo giren alrededor de un objeto, sino que la cámara pueda elevarse o descender en cierto momento del trayecto. Ejemplificaremos esto apagando el layer recorrido recto con fillet y luego activando el layer recorrido con spline. En este caso veremos dos spline y realizando los pasos vistos anteriormente, crearemos las animaciones respectivas tal como se aprecia en los siguientes ejemplos:

Este recorrido se ha realizado mediante spline, con todos los puntos en un mismo plano.

Arriba, la animación resultante de esta operación.

Este recorrido es el mismo de arriba pero en este caso, se han manipulado los puntos de control de la spline subiéndolos o bajándolos  en el eje Z mediante modo ortho (F8), y con ello logramos efectos de ascenso y/o descenso de la cámara:

Arriba, la animación resultante de esta operación.

Un aspecto importante a considerar es que la gran ventaja de crear varios recorridos y/o puntos en la escena al mismo tiempo es que estos quedarán guardados en el cuadro de Motion Path Animation y podremos escogerlos en cualquier momento al realizar la animación:

Con estos pasos hemos creado el primer tipo de animación (cámara móvil y objetivo fijo) y hemos conocido los aspectos más relevantes de esta. Debemos hacer mención que mientras mayor sea el tiempo asignado a la animación, esta será más lenta y viceversa. Este principio es válido para todos los tipos de animación que realicemos.

2) Creando un recorrido panorámico o paneo

Para crear este tipo de recorrido nos bastará con realizar lo inverso de lo realizado anteriormente, es decir, dejar la cámara en un punto fijo y que el target apunte al recorrido. Ahora invocaremos al comando anipath y dejaremos las siguientes opciones en Link To:

Camera: link to point (antes se debe configurar el Target en Link to path para que aparezca la opción Point).
Target: link to path.

Demás está decir que podremos crear nuevos recorridos, nuevos puntos o elegir los ya existentes. Con estos cambios haremos que el objetivo se mueva en el recorrido mientras que la cámara permanece fija, esto es ideal para crear vistas panorámicas o mostrar lugares cerrados como habitaciones. Ejemplificaremos esto apagando el layer recorrido con spline y activando el layer recorrido paneo. Ahora procederemos a invocar a anipath y elegiremos como Point la intersección de la cruz inferior derecha, mientras que el path será la curva spline respectiva.

Ahora nos bastará con repetir el proceso de creación de la animación y desactivar la opción Corner Deceleration. Configuraremos los parámetros de la animación de la misma manera en que lo hicimos con los primeros ejercicios. El resultado de la animación es el siguiente:

En este caso puntual hemos generado un recorrido de cámara de tipo panorámico o de “paneo”. Demás está decir que el recorrido puede ser lineal, curvo, abierto o cerrado. También podremos modificar la spline para ascender/descender en el recorrido mismo o utilizarlo para otros fines específicos como por ejemplo, mostrar la parte superior o inferior de un espacio.

Si queremos ejemplificar la animación de un espacio interno notaremos que en el interior del templo tendremos un par de recorridos interiores y un punto interno respecto de este. Procedemos a ocultar mediente hide el recorrido en “diagonal” de tal manera de dejar sólo el recorrido paralelo al plano XY de la imagen siguiente:

Procedemos a realizar el paneo respectivo, vinculando camera en el punto de intersección de la cruz interior mientras que target irá vinculado al recorrido interno. El resultado de la animación es el siguiente:

Al igual que en los otros casos, se puede modificar esta curva jugando con las alturas de los puntos de control del nuestro recorrido para lograr otros tipos de animación para nuestra panorámica. Para esto desocultamos todo medianter unhide y cuando realicemos el paneo elegiremos esta vez la curva “diagonal”, ya que esta es originalmente una copia de la misma curva anterior pero se le han modificado las alturas de los puntos de control respectivos:

El resultado de la animación es el siguiente:

3) Creando una cámara subjetiva o de primera persona

Si queremos que tanto la cámara como el target se muevan por el recorrido (y de esta forma creamos una animación con cámara en primera persona o subjetiva), sólo debemos ir al comando anipath y dejar las siguientes opciones en Link To:

Target: link to path (una vez aquí debemos elegir la opción none).
Camera: link to path.

Tip: también se puede enlazar el target al mismo path en lugar de la opción none.

Volvemos a nuestro archivo para aplicar este principio y por ello crear este tipo de animación. Activaremos el layer recorrido subjetivo y luego escondemos la curva en diagonal mediante hide, de tal modo que sean visibles la curva de la imagen siguiente:

Como podemos apreciar, se ha dibujado una spline en el interior de nuestro templo la cual está a una altura media respecto al interior y está paralela al plano XY. Ahora activamos anipath y linkearemos la cámara a esta curva, mientras que el target irá vinculado a la opción none. Esto puede resumirse en el cuadro Motion Path Animation:

La curva se ha denominado recorrido interno subjetivo. En este caso, la cámara se moverá en esta línea mientras que el target seguirá el movimiento de la cámara, ya que de por sí este no está linkeado a ningún elemento. La animación resultante es la siguiente:

En este caso puntual hemos generado un recorrido de cámara “subjetiva” o de primera persona. Demás está decir que el recorrido puede ser lineal, curvo, abierto o cerrado. También podremos modificar la spline para ascender/descender en el recorrido mismo o utilizarlo para otros fines específicos como por ejemplo, subir a un piso superior. Esto puede ejemplificarse en el siguiente ejercicio de nuestro archivo:

Desocultamos todas las líneas mediante unhide y luego de eso ocultamos la curva original, de modo que sean visible el recorrido de la imagen siguiente. En este caso, es la misma spline del ejemplo anterior pero en este caso esta tiene modificada la altura de cada punto de control.

La animación resultante es la siguiente:

4) Creando un recorrido travelling

Finalmente, si se crean varios recorridos podremos linkear tanto la cámara como el target a dos paths o recorridos diferentes. Para ello, sólo debemos ir al comando anipath y dejar las siguientes opciones en Link To:

Target: link to path.
Camera: link to path (debe ser diferente del primer recorrido).

Volvemos a nuestro archivo para aplicar este principio y por ello crear este tipo de animación. Activaremos el layer recorrido travelling y luego escondemos las líneas curvas mediante hide, de tal modo que sólo sean visibles las líneas rectas de la imagen siguiente:

Como podemos apreciar, se han dibujado dos líneas rectas que configurarán nuestro traveling. Activamos anipath y linkearemos la cámara a la línea más larga mientras que el target irá vinculado a la más corta. Esto puede resumirse en el cuadro Motion Path Animation:

La línea larga se ha denominado travelling lineal largo. En este caso, la cámara se moverá en esta línea mientras que el target lo hará en la línea corta, denominada travelling lineal cortoLa animación resultante es la siguiente:

En este caso puntual hemos generado el “travelling” de cámara gracias a los recorridos paralelos. Demás está decir que estos recorridos pueden ser lineales, curvos, utilizar dos recorridos iguales o totalmente diferentes. En este último caso, se pueden producir animaciones curiosas según el tipo de recorrido y las alturas que este tenga. Esto puede ejemplificarse en los siguientes ejercicios de nuestro archivo:

Desocultamos todas las líneas mediante unhide y luego de eso ocultamos las líneas rectas junto con las curvas en diagonal, de modo que sean visibles las líneas curvas de la imagen siguiente. En este caso, ambas son splines pero están contenidas en un mismo plano.

La animación resultante es la siguiente:

Para apreciar el segundo ejemplo, desocultamos todas las líneas mediante unhide y luego de eso ocultamos las líneas rectas junto con las curvas que están en el mismo plano, de modo que sean visibles las curvas de la imagen siguiente. En este caso, son las mismas splines del ejemplo anterior pero en este caso estas tienen modificadas las alturas de los puntos de control.

La animación resultante es la siguiente:

Creando la animación final

Es bueno recordar que podremos realizar varias animaciones de prueba las cuales se demorarán relativamente poco ya que normalmente no utilizan luces GI ni iluminación artificial. Sin embargo, si realizamos la animación final debemos tomar en cuenta lo siguiente:

1) Usar resoluciones altas en video, mínimo de 640 x 480 píxeles. Nunca usar pequeñas pues se verán pixeladas en pantalla al agrandar el video.

2) Usar la calidad media (medium) o Draft ya que es la standard y no es tan demorosa como las más altas. Si el PC nos lo permite, podemos usar calidades más altas. Como la configuración del render afecta a la calidad de la animacíon final, debemos primero configurar la calidad de este especialmente si trabajamos con la versiones modernas de AutoCAD, ya que allí podremos establecer el tiempo de duración del render y la calidad respectiva.

3) La creación y el renderizado de la animación final demora mucho tiempo (en no pocos casos incluso se puede demorar algunos días) por lo que se recomienda realizarlas con anticipación y no utilizar tiempos excesivamente largos (la animación no debiera durar más de 2 minutos como máximo) ni tampoco demasiado cortos que no permitan ver la animación de forma óptima (al menos 10 segundos).

Para finalizar el tutorial se renderizará la primera animación del recorrido subjetivo. En nuestra escena y si no lo hemos hecho, colocaremos la luz del sol y la iluminación GI, ajustamos los parámetros del render, ejecutamos anipath y en la opción de Visual Style elegimos “Rendered“. En el ejemplo se han asignado 30 segundos de tiempo y procedemos a guardar la animación. Como el video rendereará cada cuadro de forma similar a un render individual, debemos esperar mucho tiempo para crear la animación total (en este caso son 600 cuadros), por lo que se recomienda renderear preferentemente de noche para dejar trabajando al PC.

El video final de la animación de ejemplo es este (con 30 segundos de tiempo total y en calidad Rendered/Draft) y en 640 x 480:

Este segundo video final es la misma animación anterior, pero renderizado en calidad Rendered/High y en 320 x 240:

Nota final: en la versión de AutoCAD 2017 hay un problema con el comando anipath pues al elegir cualquier punto de la opción Point, SIEMPRE nos marcará el punto 0,0,0. Este es un problema de esta versión del programa y NO tiene solución, por lo que en este caso se recomienda realizar los ejercicios de este tutorial en otra versión del programa (2018, 2016, etc.) o mover todo el modelo 3D para adaptarlo al punto respectivo, aunque esto último sea muy molesto.

Este es el fin de este Tutorial.

Descargar material del tutorial: ir a página de descargas.

Temas y Tutoriales relacionados

Print Friendly, PDF & Email
[Total: 0    Average: 0/5]

3 Responses to AutoCAD 3D Tutorial 10: Animación en AutoCAD, parte 2: Anipath (recorrido)

Deje un comentario en este artículo

Publicidad
Otras webs del autor

TFCatalog.cl es un blog donde se revisan periódicamente figuras (juguetes) del universo Transformers, además de ser un catálogo personalizado de colección la cual está categorizada según línea.

http://www.tfcatalog.cl
Donar a MVBlog

Si le gusta esta web puede ayudar a mejorar su contenido, su calidad y a mantener activo este proyecto mediante su donación vía Paypal.

 
 

Publicidad
Suscríbase a MVBlog y reciba los últimos tutoriales, noticias y posts acerca de CAD, 3D y dibujo:
Gracias a FeedBurner
Reserve Hoteles

Si gusta de viajar, reserve alojamiento en booking.com y así ayuda a colaborar con este proyecto:
booking.com

Translate MVBlog to
Buscar en Google


Encuesta

El tema que más le interesa del blog es...

View Results

Loading ... Loading ...
Publicidad
Ultimos Apuntes
Ultimos AutoCAD
Ultimos Tutoriales 3D
Bibliografía (al azar)
Publicidad
Archivo de MVBlog
Tráfico del blog
  • 297693Total Visitas:
  • 378Visitas hoy:
  • 1478Visitas ayer:
  • 8552Visitas semana:
  • 14549Visitas por mes:
  • 1,168Visitas por día:
  • 5Visitantes online:
  • 17/03/2018Inicio: