Tutoriales y apuntes recomendados

Tutorial 14: Inserción de referencias o XREF, aplicado en 3D

Como ya lo hicimos anteriormente en el tutorial correspondiente a AutoCAD 2D, definiremos como referencias externas o "XREFs" a archivos específicos que cumplen la función de servir como guía, calco o referencia para realizar dibujos complejos. Estos archivos pueden ser de imagen, del mismo software (DWG) o también de otros programas similares como Microstation. También explicamos el cómo se realizaban bloques o dibujos complejos utilizando esta técnica, pero en este nuevo tutorial llevaremos el concepto de XREF a la aplicación práctica en la gestión y modelado de proyectos tridimensionales. XREF nos servirá de sobremanera en proyectos 3D de carácter complejo ...

Leer más...

AutoCAD 2D Tutorial 06b, Cota Leader

Como sabemos, dibujar en AutoCAD tiene como fin llevar lo dibujado en la pantalla a la realidad mediante la construcción de una pieza, una máquina, un producto o un proyecto de Arquitectura. Para que eso sea posible, la teoría del dibujo técnico establece dos requisitos indispensables que deben cumplirse si se ha dibujado algo que ha de fabricarse en un taller (si es una pieza, máquina o un producto) o construirse en un terreno, si es que hablamos de una edificación: - Que las vistas del dibujo no permitan dudas respecto a su forma. - Que la descripción de su tamaño sea ...

Leer más...

Maquetería 04: Introducción y tipos de maquetas

Concepto de maquetería Definiremos como Maquetería al arte de fabricar maquetas. A partir de esto definiremos una "maqueta" como una representación tridimensional o 3D de un objeto o evento. La maqueta puede ser funcional o no y además puede representar eventos u objetos reales o ficticios: Maqueta de una escena ferroviaria, en escala H0 (1:87). En este tipo de maquetas los trenes y las señales ferroviarias funcionan gracias a un complejo sistema eléctrico. Maqueta de la X-Wing de Star Wars, en escala 1:29. Este tipo de maquetas poseen funciones como abrir la cabina, mover las alas o una base para exhibición. La maqueta generalmente se suele ...

Leer más...

Maquetería 06: Materiales para maquetería

Uno de los fines de la maquetería es la representación de los proyectos y/o elementos de la forma más realista posible. Por esto mismo es que los materiales que se utilicen deben emular de la mejor forma posible la materialidad, texturas o colores del proyecto original como por ejemplo el concreto, el vidrio o la madera. Los materiales utilizados para la construcción de maquetas son muy variados, y de hecho prácticamente cualquier material puede utilizarse para este fin. Sin embargo en el mercado encontraremos varios materiales especialmente creados para este arte. Los materiales principales utilizados son los siguientes: El Cartón El cartón es ...

Leer más...

Comandos AutoCAD Tutorial 03: helpers o ayudantes de dibujo

En AutoCAD ya hemos aprendido las unidades básicas de dibujo y las cuatro formas en que podemos realizar estos en el programa. Sin embargo, dibujar elementos y formas complejos es algo difícil ya que el espacio donde trabajamos es un plano de carácter “ilimitado” y por ello es difícil colocar límites claros para nuestro trabajo y además de eso, es difícil dibujar "a pulso" en el programa sin cometer errores. Por esto mismo, AutoCAD pone a nuestra disposición una serie de ayudantes para nuestros dibujos llamados Helpers, de modo de facilitar la ejecución de estos y por ende, ahorrar tiempo ...

Leer más...

Comandos AutoCAD Tutorial 04: referencia a objetos (OSNAPS)

Si bien en un tutorial anterior estudiamos el concepto de coordenadas X e Y en AutoCAD y que evidentemente el programa lo sigue utilizando como base para el dibujo 2D y 3D, estas fueron pensadas originalmente para equipos sin las capacidades de hoy en día, cuando las primeras versiones de AutoCAD sólo tenían textos y la famosa barra de comandos. En ese entonces los comandos e instrucciones se ejecutaban exclusivamente desde el teclado escribiendo el nombre del comando en la barra y luego presionando la tecla enter. Gracias al avance de la informática y por ende del programa mismo, hoy ...

Leer más...

Comandos AutoCAD Tutorial 12: comandos Move y Copy

En este tutorial veremos los diferentes comandos de transformaciones move y copy en AutoCAD los cuales, como sus nombres lo indican, nos permitirán desplazar y/o copiar uno o más objetos hacia cualquier posición del área de dibujo. Además veremos aplicaciones exclusivas del comando copy como Array, el cual nos permitirá no solo copiar una gran cantidad de elementos sino que también nos permite distribuirlos en torno a un elemento o distancia. El comando Move Un comando importantísimo en AutoCAD es el llamado mover o simplemente move. Move nos permitirá mover desde una posición a otra uno o más elementos del dibujo sean estos ...

Leer más...

Comandos AutoCAD Tutorial 15: el comando Array

En este nuevo tutorial veremos otro de los comandos más versátiles de AutoCAD, ya que se trata del comando llamado array o lo que es lo mismo, la copia de objetos mediante matrices o arreglos las cuales permiten distribuir copias en el espacio y pueden ser de tipo rectangular, polar o en referencia a un recorrido o también llamado path. En este artículo veremos los tres tipos de matriz que posee el comando array además de aplicaciones exclusivas (mediante ejemplos y archivos) de este comando, e información complementaria respecto a su uso en el dibujo 2D y en otro tipo de ...

Leer más...

AutoCAD 2D Tutorial 06: Acotación y estilos de cota

Como sabemos, dibujar en AutoCAD tiene como fin llevar lo dibujado de la pantalla a la realidad mediante la construcción de una pieza, una máquina, producto o un proyecto de Arquitectura. Para que eso sea posible, la teoría del dibujo técnico establece dos requisitos indispensables que deben cumplirse si se ha dibujado algo que ha de fabricarse en un taller (si es una pieza, máquina o un producto) o construirse en un terreno, si es que hablamos de una edificación: - Que las vistas del dibujo no permitan dudas respecto a su forma. - Que la descripción de su tamaño sea exacta. ...

Leer más...

AutoCAD 2D Tutorial 09: layout y diseño para impresión

El final de cualquier dibujo que realicemos en AutoCAD se refleja siempre en el dibujo impreso. Para los arquitectos, por ejemplo, AutoCAD es ideal para la elaboración de planos, auténtica materia prima para su trabajo en el desarrollo y supervisión de una construcción. Sin embargo, AutoCAD es además una excelente herramienta para el diseño, lo que implica que solamente nos concentraremos en realizar el dibujo sin preocupaciones, ya que no importa si los dibujos están o no dispuestos de manera adecuada para elaboración del soporte (plano) ya que para esto tenemos el layout, el cual nos permitirá configurar el dibujo ...

Leer más...

Dibujo Técnico: tipos de perspectivas

Acerca de las perspectivas Para la representación de objetos en el dibujo técnico se utilizan diversas proyecciones que se traducen en vistas de un objeto o proyecto, las cuales suelen ser los planos o vistas 3D que nos permiten la interpretación y construcción de este. El dibujo técnico consiste en esencia en representar de forma ortogonal varias vistas cuidadosamente escogidas, con las cuales es posible definir de forma precisa su forma, dimensiones y características. Además de las vistas tradicionales en 2D se utilizan proyecciones tridimensionales representadas en dos dimensiones llamadas perspectivas. Los cuatro tipos de perspectivas base son: Isométrica (ortogonal) Militar (oblicua) Caballera (oblicua) Cónica ...

Leer más...

Dibujo Técnico: convenciones sobre el dibujo de Arquitectura

Acerca del dibujo arquitectónico Como ya sabemos, la expresión gráfica que se utiliza en la Arquitectura está definida por un conjunto de especificaciones y normas y a la vez estas son parte de lo que conocemos como dibujo técnico. El ojo humano está diseñado para ver en 3 dimensiones: largo, alto y ancho. Sin embargo, estas sufren distorsión dependiendo de la distancia y la posición donde esté situada la persona respecto al objeto que se observa. Por lógica no podríamos construir ese objeto si lo dibujásemos “tal cual” lo vemos, ya que para ello fuera posible el objeto tendría que mantener su ...

Leer más...

Dibujo Técnico: tipos de línea, grosores y usos

Las líneas en Arquitectura y en Ingeniería Las líneas en arquitectura y en dibujo técnico cumplen un papel fundamental en la representación de nuestro proyecto, pues nos permiten definir las formas y las simbologías precisas para la correcta interpretación y posterior construcción de este. Sin los distintos tipos de línea nuestro dibujo se parecería más a un dibujo artístico y sin los grosores, nuestro dibujo pasaría a ser plano y no sería comprendido en su totalidad por el ejecutante o constructor. Las líneas se clasifican, según la NCh657, en los siguientes tipos y clases: Los tipos de líneas se usan según los ...

Leer más...

Dibujo Técnico: la escala y sus aplicaciones

La escala de los planos Como ya sabemos, si dibujamos un proyecto de arquitectura o un objeto grande es imposible que lo podamos hacer "a tamaño real" pues los formatos de papel son limitados a un ancho máximo de 1,2 mts, y además por razones prácticas (tamaño, peso, transporte y portabilidad) y de lectura es inviable. Plano en tamaño real de Vardehaugen. A pesar de ser un concepto muy interesante y bonito de apreciar, nos muestra el problema de "dibujar" un proyecto en su tamaño verdadero. Si por el contrario dibujamos un objeto muy pequeño en un papel tenemos un problema similar, ya ...

Leer más...

AutoCAD 3D Tutorial 02: Modelado 3D con primitivas (templo griego)

Uno de los principios básicos del modelado 3D es que todos los objetos que existen en la realidad y en la naturaleza nacen a partir de las llamadas "primitivas". Una primitiva se define como la geometría 3D o Poliedros básicos que pueden representarse tridimensionalmente mediante maquetas físicas o virtuales. Una de las características más importantes de estas es que si estas se modifican y/o editan ya sea mediante adición de estas, sustracción u otras acciones, van definiendo formas mucho más complejas. Por esto mismo y al igual que en cualquier otro programa 3D, en AutoCAD existen geometrías 3D llamadas “primitivas básicas” ...

Leer más...

AutoCAD 3D Tutorial 11: Consejos para un buen modelo 3D

En este tutorial se pretende dar consejos para realizar una buena gestión del modelado 3D en AutoCAD sin morir en el intento (o lo que es igual, sin que nuestro computador colapse y/o que nuestro archivo 3D pese demasiados megas). Estos consejos están basados fundamentalmente en mi experiencia como docente y sobre todo como modelador y animador 3D, y la idea es que estos les sean útiles para todos quienes quieran gestionar de forma eficiente sus modelos 3D en AutoCAD, o para quienes están comenzando a realizar sus primeros proyectos. Para el correcto modelado 3D es necesario seguir ciertas pautas o ...

Leer más...

AutoCAD 3D Tutorial 13: UCS, aplicación en modelado 3D

En esta ocasión y dado que hacía mucho tiempo que no se realizaba un tutorial sobre modelado en AutoCAD 3D, hoy nos corresponde mostrar uno de los comandos más eficientes y a la vez de los menos utilizados en el mundo del 3D de AutoCAD: se trata del comando llamado UCS o "User Coordinate System" ya que este es un sistema que nos permite modificar la posición del sistema standard de los ejes coordenados (X,Y,Z), para adaptarlo a cualquier lugar y/o posición para así facilitar el modelado y/o adición o sustraccion de elementos. En esta ocasión modelaremos la estructura en ...

Leer más...

Planimetría 01: Planta de Arquitectura

Definiremos la planta de Arquitectura como un CORTE de tipo HORIZONTAL del edificio o proyecto mediante un plano virtual el cual a su vez remueve la parte superior del edificio. Este corte se realiza usualmente a 1,20 o 1,40 mts y nos sirve para definir la estructura y los espacios principales del proyecto o edificación, en su largo y ancho. La planta es fundamental para comprender un proyecto pues las proporciones y dimensiones de esta son la base para la construcción de este. El concepto queda graficado en el siguiente ejemplo: En el caso de la planta en particular, al estar el plano ...

Leer más...

Planimetría 02: Corte de Arquitectura

Podemos definir un corte de Arquitectura como una sección o "corte" (valga la redundancia) mediante un plano VERTICAL de una edificación, edificio o proyecto de Arquitectura, y nos sirve para definir la relación de escala, proporción, alturas y los elementos estructurales del proyecto frente al contexto. A diferencia de la planta, el corte puede en teoría efectuarse en cualquier parte del proyecto y por ello deberá definirse mediante una señalización de este en la planta y además tener un "sentido", es decir, una dirección hacia donde queremos visualizar los elementos del corte mismo. Este concepto se puede graficar mediante el siguiente ...

Leer más...

Planimetría 03: Elevaciones en Arquitectura

Definiremos como elevaciones a las proyecciones ortogonales bidimensionales de TODAS las caras visibles de un proyecto, vivienda o edificio, utilizando la ya conocida proyección ortogonal de puntos. Estas caras se proyectan en planos imaginarios paralelos a la cara en cuestión y por ello, pueden ser representadas mediante planos bidimensionales. Las elevaciones también se denominan fachadas o alzados. El concepto de las elevaciones puede graficarse en el siguiente esquema: En el esquema notamos que el Norte geográfico está representado en el modelo ya que el nombre de cada cara dependerá de su ubicación geográfica respecto al terreno. El resultado de la proyección de cada ...

Leer más...

Planimetría 04: Representación en planos de muros, puertas y ventanas

En este apunte se muestran las representaciones de los principales objetos en una planta de Arquitectura, en base principalmente a la NCh745 para el caso de las puertas y ventanas. Cabe destacar que estas normas son válidas tanto para el dibujo a mano como mediante software. Representación de muros en planta y corte En el caso de la Arquitectura la representación de muros más utilizada es la línea de contorno sin relleno. Esta debe ir valorizada según la importancia jerárquica o estructural del elemento. Este tipo de representación es válido tanto en planta como en cortes de un proyecto. Los ejemplos de abajo ...

Leer más...

3DSMAX Tutorial 11: motor ART Render, Introducción y configuración

En el mundo real, la iluminación afecta nuestras vidas desde ángulos muy variados: permite distinguir siluetas y formas, afecta nuestros estados de ánimo (por ejemplo, las luces de una discoteca), nos alerta sobre peligros u otras indicaciones (semáforo, sirenas, etc.), nos entretiene, etc. Existen muchas fuentes de luz natural y artificial que nos generan muchas variables de iluminación. Intentar emular esas variables en un espacio 3D es el objetivo de las herramientas de iluminación en 3DSMAX. El programa basa a su representación de la iluminación en el ángulo que inciden los rayos en las caras de los objetos. Si este ángulo es perpendicular la iluminación es máxima, en ángulos menores esta irá decreciendo hasta desaparecer cuando los rayos queden tangentes a la superficie.

En este tutorial nos introduciremos al motor de render que viene por defecto en 3DSMAX 2017, y se trata nada más ni nada menos que del motor llamado ART Render. Estudiaremos la configuración global de este y su integración con Physical Camera.

Preparando la escena

Una de las cosas más interesantes del nuevo motor ART Render es que nos permite lograr resultados bastante aceptables sin necesidad de realizar tantas configuraciones como ocurre, por ejemplo, con Mental Ray. Al igual como sucede con otros motores de render, ART Render trae sus propios materiales llamados Physical Material y además incorpora una nueva cámara llamada Physical camera. Ambos serán tratados en profundidad en un siguiente tutorial. Para analizar los parámetros de este motor de render prepararemos una escena básica y sin aplicar materiales de tipo Physical sino que sólo con colores base. En nuestro caso la escena es la siguiente:

En este caso tenemos un bloque de 3DSMAX con un plano base y le hemos aplicado una cámara llamada Physical camera. Esta cámara es la que agrega por defecto 3DMAX 2017 cuando la colocams mediante CRTL+C, y es parte importante de este motor de render ya que este tipo de cámara incorpora un “exposure control” propio para así poder diferenciar el render de la vista de la cámara del de otras perspectivas, las cuales utilizarán el valor EV de la exposición global o Exposure global.

Configurando el motor de render mediante ART Render Setup

Para configurar el motor de render debemos ir al icono de Render Setup, el cual tiene un diseño algo diferente respecto a las versiones anteriores de 3DSMAX. En esta opción llegamos al menú de render y configuración donde ya notamos que el motor de render por defecto es ART Render, y el diseño del panel es mucho más sencillo de manejar.

Nos vamos a la persiana ART Renderer para acceder a los parámetros de este motor de render:

Como se ve en la imagen, y a diferencia de otros motores de render como Mental Ray, el panel de configuración de ART Render es mucho más sencillo ya que no requiere de configuraciones excesivas ni detalles tan elaborados para lograr un buen resultado. Este motor es similar al que viene en AutoCAD 2016 ya que también podremos configurar el render según calidad, tiempo o cantidad de iteraciones (levels). Entre sus parámetros más importantes se destacan:

Render Quality

Nos permite definir la calidad del render mediante valores expresados en dB (Noise Level o nivel de ruido) lo cual implicará que a mayor cantidad de dB mejor calidad del render.

Si renderizamos la escena anterior mediante F9, notaremos que el motor ya incluye la iluminación global y además el render tendrá mayor o menor ruido o granizado (noise) dependiendo de la calidad en que hayamos renderizado. Si elegimos Min (1 dB) el nivel de ruido en el render será el máximo mientras que en Max (100 dB) tendremos prácticamente “0” nivel de ruido, pero el tiempo de render aumenta de forma muy considerable.

Renderizado en calidad Min, 1 dB.

Renderizado en calidad Draft, 20 dB.

Renderizado en calidad Medium, 28 dB.

Renderizado en calidad High, 33 dB.

Renderizado en calidad X-High, 55 dB.

Stop rendering ever quality is not attained (detener el renderizado siempre que la calidad no sea lograda)

Al igual que en AutoCAD, esta opción nos permite además de definir la calidad de render, el tiempo o la cantidad de iteraciones (o levels) que queremos que este se realice. Podremos activar estas opciones si es que el render se demora demasiado (como al renderizarlo en calidad Max) o si no queremos la calidad por defecto que establecimos previamente en Render Quality.

Lightning and material Fidelity (fidelidad de la iluminación y materiales)

Esta opción controla la técnica utilizada para renderizar la imagen. Por defecto nos aparece la opción Fast Path Tracing que nos dará renders relativamente rápidos y optimizará la iluminación indirecta para minimizar el ruido (noise) aunque comprometen la iluminación y la fidelidad del sombreado, y la opción Advanced Path Tracing es la que nos da los mejores resultados y calidad ya que la fidelidad es muy alta, aunque el tiempo de render aumentará.

Render en calidad High, realizado mediante Fast Path Tracing.

Render en calidad High, realizado mediante Advanced Path Tracing.

Noise Filtering (filtrado de ruido)

Esta opción nos permite filtrar en porcentaje el ruido o granizado del render, no importando el tipo de calidad de este. Podemos elegir desde el 0% o Unfiltered (sin filtro) hasta la calidad 100% o Fully filtered (totalmente filtrado). Evidentemente mientras más se filtre el ruido y/o la calidad sea mejor, el tiempo de render aumentará.

Render realizado en calidad medium, con 0% o Unfiltered.

Render realizado en calidad medium, con 50% de Noise Filtering.

Render realizado en calidad medium, con 100% o Fully filtered.

Anti-Aliasing

Nos permite ajustar el antialiasing o eliminar los “dientes de sierra” de los bordes de un modelo o de un render. En este caso al mínimo de píxeles que podemos configurar es 1,0 y conforme lo vayamos aumentando, la imagen sufrirá un “blur” o desenfoque debido al efecto propio del antialisado. El valor por defecto es 3.

Render realizado en calidad medium, con 1 píxel de antialiasing.

Render realizado en calidad medium, con 3 píxeles de antialiasing (valor por defecto).

Render realizado en calidad medium, con 10 píxeles de antialiasing.

Si bien este motor de render ya cuenta con la iluminación global aplicada, los aspectos más importantes de edición de esta (como zona geográfica o el Norte) no pueden ser modificados a primera vista. Para esto debemos configurarla mediante un nuevo parámetro de luz llamado Sun Positioner.

Configurando la iluminación global en ART Render

Para configurar la iluminación global en ART Render necesitaremos colocar una nueva luz solar llamada Sun Positioner. Este posicionador de Sol nos permitirá editar parámetros como la zona geográfica, lugar, tiempo y girar el Norte geográfico si es necesario. Para colocarla en la escena, nos vamos a la vista Top y en el panel de “añadir elementos” vamos al icono de luces y elegimos la persiana Photometric:

Una vez aquí elegiremos la opción Sun Positioner y la insertaremos de forma similar a Daylight de Mental Ray, es decir: clickeamos en el origen para definir el target de la luz, luego giramos con el mouse para definir el norte y mediante click y el movimiento de este, definir la altura orbital. En nuestra escena, insertaremos la luz en la vista Top:

Definiendo la luz Sun Positioner en la escena.

Al igual que en el caso de Mental Ray, sólo debemos colocar una luz en toda la escena. Debemos tener cuidado al seleccionarla puesto que no nos servirá tomarla por el “Sol”, sino que este tipo de luz deberá seleccionarse exclusivamente tomando el compass rose o la rosa de los vientos:

Selección de la luz Sun Positioner mediante el compass rose o rosa los vientos.

Si tomamos el compass rose y luego nos vamos al panel de modificar, encontraremos los siguientes parámetros:

Display: en este menú podemos elegir si queremos que se muestre la rosa de los vientos o no (show), ademas podremos definir el radio de esta y lo más importante: podremos girar el Norte geográfico mediante la opción North Offset. También podremos definir la distancia del sol al terreno (altura orbital) mediante Sun Distance.

Sun Position: al igual que en el caso de Daylight de Mental Ray, en esta opción podremos definir los parámetros generales de la iluminación como la fecha, el tiempo y la locación donde queremos que se aplique la iluminación del sol. Las opciones son:

Date, Time and Location: permite definir parámetros de tiempo, lugar y zona geográfica. Podremos definir la fecha mediante day, month y year además de las horas mediante el parámetro time. Lo interesante de esta opción es que podremos definir el lugar geográfico de manera similar a Mental Ray ya que si hacemos click en el lugar por defecto (San Francisco, CA) dentro del parámetro, podremos cambiarlo a otra zona geográfica y el Norte junto a la trayectoria solar se ajustarán.

Weather data File: esta opción nos permite cargar archivos especiales de lugar y tiempo llamados “EnergyPlus Weather Data File” cuya extensión es EPW, y que se usan principalmente en simulaciones climáticas con programas especiales como Energy plus o también Ecotect. Algunos de estos archivos pueden descargarse en https://energyplus.net/weather.

Inserción de un archivo EPW en la escena.

Manual: permite mover el Sol de forma manual ajustando los parámetros de Azimut y Altitude (Altitud), ya que no podemos mover el Sol de forma directa.

Moviendo el Sol de forma manual mediante los parámetros de Azimut y Altitude.

Si renderizamos la escena una vez insertado el Sun Positioner, el resultado será el siguiente:

Como vemos, la imagen es prácticamente blanca y por ende no muestra el resultado. Esto ocurre simplemente porque no hemos ajustado el parámetro de Exposure Control y además el valor de EV (Exposure Value) es muy bajo. Para ajustarlo, debemos ir a Rendering >>> Exposure control:

Estando ya en Exposure Control notaremos que al agregar el Sun Positioner, tendremos un nuevo tipo de Exposure control llamado Physical Camera Exposure Control, y que en el mapa de cielo se nos agrega uno nuevo llamado Physical Sun & Sky Environtment (mapa de cielo de Sun Positioner). Si bajamos un poco la persiana encontraremos un parámetro llamado Global Exposure donde notamos que efectivamente el valor de EV es 6, el cual es bajo para una escena exterior como en este caso.

En nuestra escena, si ajustamos el valor de EV de Global Exposure a 15 y realizamos un render, el resultado cambia de forma notable ya que logramos ver el modelo sin problemas:

Ajuste de valor a EV=15 y render resultante.

En el caso que tengamos una escena interior con luces, el valor de EV se debe ajustar a esas condiciones específicas (mediante valores bajos) de manera similar a Mental Ray. Volviendo a la escena en sí, además de Exposure Value tenemos otro parámetro muy importante llamado White Balance o balance de blancos, el cual nos permite ajustar la escena a los tipos de iluminación más comunes mediante tipos de lámparas o también un color específico. Las tres opciones que tenemos disponibles son:

Iluminant: esta opción nos permite elegir muchos tipos de iluminaciones ya configuradas como Daylight (por defecto), halógenos, flourescentes, lámparas de sodio, etc.

Render realizado con Daylight.

Render realizado con Sunlight.

Render realizado con Shade.

Render realizado con Halogen.

Render realizado con Low Pressure Sodium.

Temperature: ilumina la escena tomando en cuenta los grados K° (Kelvin). En valores menores los tonos serán cálidos y en valores mayores serán fríos, aunque en ete caso puntual tendremos variaciones de tonos según la cantidad de K° especificados. El valor de K° por defecto es 6400.

Render realizado con 100 K°.

Render realizado con 1.000 K°.

Render realizado con 3.000 K°.

Render realizado con 6.000 K°.

Render realizado con 10.000 K°.

Render realizado con 20.000 K°.

Custom: permite elegir un color para la iluminación y el balance. Esto afectará el entorno global de la escena.

Configuración y render resultante aplicando el color celeste.

Configuración y render resultante aplicando el color verde olivo.

Exposure Control y Physical Camera

Una de las ventajas interesantes de ART Render es que si tenemos colocada una cámara de tipo Physical Camera (por defecto en 3DSMAX 2017) podremos utilizar los parámetros de EV de esta ya que como se enunció antes, este tipo de cámara viene con su propio Exposure Control. Si seleccionamos la cámara y nos vamos al panel de modificar, encontraremos el siguiente menú:

En este menú tendremos las mismas opciones del cuadro Exposure Control de Rendering. Podemos modificar el valor de EV en Exposure Gain mediante la opción Target o hacerlo mediante la opción Manual, aunque en este último el valor estará dado en unidades ISO.

Además de lo anterior, también tendremos la opción White Balance ya explicada anteriormente. Lo interesante de esto es que si alteramos el valor de EV de la cámara, este afectará a la vista que esté afecta a la cámara en sí y no al resto de la iluminación global, por ende los parámetros que configuremos en esta sólo afectará al el render de la vista en sí y no a todo el proyecto completo.

Si queremos que los parámetros configurados en la Physical Camera se apliquen sólo a la vista de esta, debemos ir nuevamente a Rendering >>> Exposure Control y una vez allí activaremos la casilla Use Physical Controls if Available. Con esta opción los parámetros que se aplicarán en la vista serán los de la cámara y no los de GE (Global Exposure), siempre y cuando la Viewport a renderizar esté en la vista de la cámara:

Exposure Control con el parámetro Use Physical Camera If Available desactivado. En este ejemplo, en toda la escena prima el valor de EV de Global Exposure y el valor de este es 11.

Render del ejemplo anterior.

El mismo ejemplo anterior pero esta vez con el parámetro Use Physical Camera If Available activado. En este caso, en toda la escena prima el valor de EV de la vista de Physical Camera y el valor de EV de esta es 15 en lugar de 11.

Render del ejemplo anterior.

Si renderizamos una vista distinta de la cámara o una cámara que no sea Physical, notaremos que el valor de EV que prima es el de Global Exposure, ya que el valor de EV de Physical Camera sólo Afecta a la vista de esta y no al proyecto completo.

El mismo ejemplo anterior, con el parámetro Use Physical Camera If Available activado pero esta vez enfocado en una vista distinta de la Physical Camera. En este caso, en toda la escena prima el valor de EV de Global Exposure y en el ejemplo, el valor de EV de este es 11.

Render del ejemplo anterior.

Si agregamos una segunda o más cámaras de tipo Physical, podremos controlar el valor de EV de cada una de estas y renderizarlas de forma independiente según cada vista.

El mismo ejemplo anterior con el parámetro Use Physical Camera If Available activado pero esta vez se ha agregado una segunda Physical Camera. En este caso, el valor de EV de esta cámara es 13. La primera cámara mantiene sus mismos parámetros originales.

Render del ejemplo anterior.

Render de la vista superior del ejemplo anterior. En este caso la vista no está afecta por una Physical Camera ya que es una Perspectiva, y por ello este render toma el valor de EV de Global Exposure el cual es 11.

Este es el fin de este tutorial.

Descargar material del tutorial: ir a página de descargas.

Temas y Tutoriales relacionados

Print Friendly, PDF & Email
[Total: 0    Average: 0/5]

Deje un comentario en este artículo

Publicidad
Otras webs del autor

TFCatalog.cl es un blog donde se revisan periódicamente figuras (juguetes) del universo Transformers, además de ser un catálogo personalizado de colección la cual está categorizada según línea.

http://www.tfcatalog.cl
Donar a MVBlog

Si le gusta esta web puede ayudar a mejorar su contenido, su calidad y a mantener activo este proyecto mediante su donación vía Paypal.

 
 

Publicidad
Suscríbase a MVBlog y reciba los últimos tutoriales, noticias y posts acerca de CAD, 3D y dibujo:
Gracias a FeedBurner
Reserve Hoteles

Si gusta de viajar, reserve alojamiento en booking.com y así ayuda a colaborar con este proyecto:
booking.com

Translate MVBlog to
Buscar en Google


Encuesta

El tema que más le interesa del blog es...

View Results

Loading ... Loading ...
Publicidad
Ultimos Apuntes
Ultimos AutoCAD
Ultimos Tutoriales 3D
Bibliografía (al azar)
Publicidad
Archivo de MVBlog
Tráfico del blog
  • 263358Total Visitas:
  • 324Visitas hoy:
  • 1607Visitas ayer:
  • 8173Visitas semana:
  • 18999Visitas por mes:
  • 1,121Visitas por día:
  • 6Visitantes online:
  • 17/03/2018Inicio: