Tutoriales y apuntes recomendados

Tutorial 14: Inserción de referencias o XREF, aplicado en 3D

Como ya lo hicimos anteriormente en el tutorial correspondiente a AutoCAD 2D, definiremos como referencias externas o "XREFs" a archivos específicos que cumplen la función de servir como guía, calco o referencia para realizar dibujos complejos. Estos archivos pueden ser de imagen, del mismo software (DWG) o también de otros programas similares como Microstation. También explicamos el cómo se realizaban bloques o dibujos complejos utilizando esta técnica, pero en este nuevo tutorial llevaremos el concepto de XREF a la aplicación práctica en la gestión y modelado de proyectos tridimensionales. XREF nos servirá de sobremanera en proyectos 3D de carácter complejo ...

Leer más...

AutoCAD 2D Tutorial 06b, Cota Leader

Como sabemos, dibujar en AutoCAD tiene como fin llevar lo dibujado en la pantalla a la realidad mediante la construcción de una pieza, una máquina, un producto o un proyecto de Arquitectura. Para que eso sea posible, la teoría del dibujo técnico establece dos requisitos indispensables que deben cumplirse si se ha dibujado algo que ha de fabricarse en un taller (si es una pieza, máquina o un producto) o construirse en un terreno, si es que hablamos de una edificación: - Que las vistas del dibujo no permitan dudas respecto a su forma. - Que la descripción de su tamaño sea ...

Leer más...

Maquetería 04: Introducción y tipos de maquetas

Concepto de maquetería Definiremos como Maquetería al arte de fabricar maquetas. A partir de esto definiremos una "maqueta" como una representación tridimensional o 3D de un objeto o evento. La maqueta puede ser funcional o no y además puede representar eventos u objetos reales o ficticios: Maqueta de una escena ferroviaria, en escala H0 (1:87). En este tipo de maquetas los trenes y las señales ferroviarias funcionan gracias a un complejo sistema eléctrico. Maqueta de la X-Wing de Star Wars, en escala 1:29. Este tipo de maquetas poseen funciones como abrir la cabina, mover las alas o una base para exhibición. La maqueta generalmente se suele ...

Leer más...

Maquetería 06: Materiales para maquetería

Uno de los fines de la maquetería es la representación de los proyectos y/o elementos de la forma más realista posible. Por esto mismo es que los materiales que se utilicen deben emular de la mejor forma posible la materialidad, texturas o colores del proyecto original como por ejemplo el concreto, el vidrio o la madera. Los materiales utilizados para la construcción de maquetas son muy variados, y de hecho prácticamente cualquier material puede utilizarse para este fin. Sin embargo en el mercado encontraremos varios materiales especialmente creados para este arte. Los materiales principales utilizados son los siguientes: El Cartón El cartón es ...

Leer más...

Comandos AutoCAD Tutorial 03: helpers o ayudantes de dibujo

En AutoCAD ya hemos aprendido las unidades básicas de dibujo y las cuatro formas en que podemos realizar estos en el programa. Sin embargo, dibujar elementos y formas complejos es algo difícil ya que el espacio donde trabajamos es un plano de carácter “ilimitado” y por ello es difícil colocar límites claros para nuestro trabajo y además de eso, es difícil dibujar "a pulso" en el programa sin cometer errores. Por esto mismo, AutoCAD pone a nuestra disposición una serie de ayudantes para nuestros dibujos llamados Helpers, de modo de facilitar la ejecución de estos y por ende, ahorrar tiempo ...

Leer más...

Comandos AutoCAD Tutorial 04: referencia a objetos (OSNAPS)

Si bien en un tutorial anterior estudiamos el concepto de coordenadas X e Y en AutoCAD y que evidentemente el programa lo sigue utilizando como base para el dibujo 2D y 3D, estas fueron pensadas originalmente para equipos sin las capacidades de hoy en día, cuando las primeras versiones de AutoCAD sólo tenían textos y la famosa barra de comandos. En ese entonces los comandos e instrucciones se ejecutaban exclusivamente desde el teclado escribiendo el nombre del comando en la barra y luego presionando la tecla enter. Gracias al avance de la informática y por ende del programa mismo, hoy ...

Leer más...

Comandos AutoCAD Tutorial 12: comandos Move y Copy

En este tutorial veremos los diferentes comandos de transformaciones move y copy en AutoCAD los cuales, como sus nombres lo indican, nos permitirán desplazar y/o copiar uno o más objetos hacia cualquier posición del área de dibujo. Además veremos aplicaciones exclusivas del comando copy como Array, el cual nos permitirá no solo copiar una gran cantidad de elementos sino que también nos permite distribuirlos en torno a un elemento o distancia. El comando Move Un comando importantísimo en AutoCAD es el llamado mover o simplemente move. Move nos permitirá mover desde una posición a otra uno o más elementos del dibujo sean estos ...

Leer más...

Comandos AutoCAD Tutorial 15: el comando Array

En este nuevo tutorial veremos otro de los comandos más versátiles de AutoCAD, ya que se trata del comando llamado array o lo que es lo mismo, la copia de objetos mediante matrices o arreglos las cuales permiten distribuir copias en el espacio y pueden ser de tipo rectangular, polar o en referencia a un recorrido o también llamado path. En este artículo veremos los tres tipos de matriz que posee el comando array además de aplicaciones exclusivas (mediante ejemplos y archivos) de este comando, e información complementaria respecto a su uso en el dibujo 2D y en otro tipo de ...

Leer más...

AutoCAD 2D Tutorial 06: Acotación y estilos de cota

Como sabemos, dibujar en AutoCAD tiene como fin llevar lo dibujado de la pantalla a la realidad mediante la construcción de una pieza, una máquina, producto o un proyecto de Arquitectura. Para que eso sea posible, la teoría del dibujo técnico establece dos requisitos indispensables que deben cumplirse si se ha dibujado algo que ha de fabricarse en un taller (si es una pieza, máquina o un producto) o construirse en un terreno, si es que hablamos de una edificación: - Que las vistas del dibujo no permitan dudas respecto a su forma. - Que la descripción de su tamaño sea exacta. ...

Leer más...

AutoCAD 2D Tutorial 09: layout y diseño para impresión

El final de cualquier dibujo que realicemos en AutoCAD se refleja siempre en el dibujo impreso. Para los arquitectos, por ejemplo, AutoCAD es ideal para la elaboración de planos, auténtica materia prima para su trabajo en el desarrollo y supervisión de una construcción. Sin embargo, AutoCAD es además una excelente herramienta para el diseño, lo que implica que solamente nos concentraremos en realizar el dibujo sin preocupaciones, ya que no importa si los dibujos están o no dispuestos de manera adecuada para elaboración del soporte (plano) ya que para esto tenemos el layout, el cual nos permitirá configurar el dibujo ...

Leer más...

Dibujo Técnico: tipos de perspectivas

Acerca de las perspectivas Para la representación de objetos en el dibujo técnico se utilizan diversas proyecciones que se traducen en vistas de un objeto o proyecto, las cuales suelen ser los planos o vistas 3D que nos permiten la interpretación y construcción de este. El dibujo técnico consiste en esencia en representar de forma ortogonal varias vistas cuidadosamente escogidas, con las cuales es posible definir de forma precisa su forma, dimensiones y características. Además de las vistas tradicionales en 2D se utilizan proyecciones tridimensionales representadas en dos dimensiones llamadas perspectivas. Los cuatro tipos de perspectivas base son: Isométrica (ortogonal) Militar (oblicua) Caballera (oblicua) Cónica ...

Leer más...

Dibujo Técnico: convenciones sobre el dibujo de Arquitectura

Acerca del dibujo arquitectónico Como ya sabemos, la expresión gráfica que se utiliza en la Arquitectura está definida por un conjunto de especificaciones y normas y a la vez estas son parte de lo que conocemos como dibujo técnico. El ojo humano está diseñado para ver en 3 dimensiones: largo, alto y ancho. Sin embargo, estas sufren distorsión dependiendo de la distancia y la posición donde esté situada la persona respecto al objeto que se observa. Por lógica no podríamos construir ese objeto si lo dibujásemos “tal cual” lo vemos, ya que para ello fuera posible el objeto tendría que mantener su ...

Leer más...

Dibujo Técnico: tipos de línea, grosores y usos

Las líneas en Arquitectura y en Ingeniería Las líneas en arquitectura y en dibujo técnico cumplen un papel fundamental en la representación de nuestro proyecto, pues nos permiten definir las formas y las simbologías precisas para la correcta interpretación y posterior construcción de este. Sin los distintos tipos de línea nuestro dibujo se parecería más a un dibujo artístico y sin los grosores, nuestro dibujo pasaría a ser plano y no sería comprendido en su totalidad por el ejecutante o constructor. Las líneas se clasifican, según la NCh657, en los siguientes tipos y clases: Los tipos de líneas se usan según los ...

Leer más...

Dibujo Técnico: la escala y sus aplicaciones

La escala de los planos Como ya sabemos, si dibujamos un proyecto de arquitectura o un objeto grande es imposible que lo podamos hacer "a tamaño real" pues los formatos de papel son limitados a un ancho máximo de 1,2 mts, y además por razones prácticas (tamaño, peso, transporte y portabilidad) y de lectura es inviable. Plano en tamaño real de Vardehaugen. A pesar de ser un concepto muy interesante y bonito de apreciar, nos muestra el problema de "dibujar" un proyecto en su tamaño verdadero. Si por el contrario dibujamos un objeto muy pequeño en un papel tenemos un problema similar, ya ...

Leer más...

AutoCAD 3D Tutorial 02: Modelado 3D con primitivas (templo griego)

Uno de los principios básicos del modelado 3D es que todos los objetos que existen en la realidad y en la naturaleza nacen a partir de las llamadas "primitivas". Una primitiva se define como la geometría 3D o Poliedros básicos que pueden representarse tridimensionalmente mediante maquetas físicas o virtuales. Una de las características más importantes de estas es que si estas se modifican y/o editan ya sea mediante adición de estas, sustracción u otras acciones, van definiendo formas mucho más complejas. Por esto mismo y al igual que en cualquier otro programa 3D, en AutoCAD existen geometrías 3D llamadas “primitivas básicas” ...

Leer más...

AutoCAD 3D Tutorial 11: Consejos para un buen modelo 3D

En este tutorial se pretende dar consejos para realizar una buena gestión del modelado 3D en AutoCAD sin morir en el intento (o lo que es igual, sin que nuestro computador colapse y/o que nuestro archivo 3D pese demasiados megas). Estos consejos están basados fundamentalmente en mi experiencia como docente y sobre todo como modelador y animador 3D, y la idea es que estos les sean útiles para todos quienes quieran gestionar de forma eficiente sus modelos 3D en AutoCAD, o para quienes están comenzando a realizar sus primeros proyectos. Para el correcto modelado 3D es necesario seguir ciertas pautas o ...

Leer más...

AutoCAD 3D Tutorial 13: UCS, aplicación en modelado 3D

En esta ocasión y dado que hacía mucho tiempo que no se realizaba un tutorial sobre modelado en AutoCAD 3D, hoy nos corresponde mostrar uno de los comandos más eficientes y a la vez de los menos utilizados en el mundo del 3D de AutoCAD: se trata del comando llamado UCS o "User Coordinate System" ya que este es un sistema que nos permite modificar la posición del sistema standard de los ejes coordenados (X,Y,Z), para adaptarlo a cualquier lugar y/o posición para así facilitar el modelado y/o adición o sustraccion de elementos. En esta ocasión modelaremos la estructura en ...

Leer más...

Planimetría 01: Planta de Arquitectura

Definiremos la planta de Arquitectura como un CORTE de tipo HORIZONTAL del edificio o proyecto mediante un plano virtual el cual a su vez remueve la parte superior del edificio. Este corte se realiza usualmente a 1,20 o 1,40 mts y nos sirve para definir la estructura y los espacios principales del proyecto o edificación, en su largo y ancho. La planta es fundamental para comprender un proyecto pues las proporciones y dimensiones de esta son la base para la construcción de este. El concepto queda graficado en el siguiente ejemplo: En el caso de la planta en particular, al estar el plano ...

Leer más...

Planimetría 02: Corte de Arquitectura

Podemos definir un corte de Arquitectura como una sección o "corte" (valga la redundancia) mediante un plano VERTICAL de una edificación, edificio o proyecto de Arquitectura, y nos sirve para definir la relación de escala, proporción, alturas y los elementos estructurales del proyecto frente al contexto. A diferencia de la planta, el corte puede en teoría efectuarse en cualquier parte del proyecto y por ello deberá definirse mediante una señalización de este en la planta y además tener un "sentido", es decir, una dirección hacia donde queremos visualizar los elementos del corte mismo. Este concepto se puede graficar mediante el siguiente ...

Leer más...

Planimetría 03: Elevaciones en Arquitectura

Definiremos como elevaciones a las proyecciones ortogonales bidimensionales de TODAS las caras visibles de un proyecto, vivienda o edificio, utilizando la ya conocida proyección ortogonal de puntos. Estas caras se proyectan en planos imaginarios paralelos a la cara en cuestión y por ello, pueden ser representadas mediante planos bidimensionales. Las elevaciones también se denominan fachadas o alzados. El concepto de las elevaciones puede graficarse en el siguiente esquema: En el esquema notamos que el Norte geográfico está representado en el modelo ya que el nombre de cada cara dependerá de su ubicación geográfica respecto al terreno. El resultado de la proyección de cada ...

Leer más...

Planimetría 04: Representación en planos de muros, puertas y ventanas

En este apunte se muestran las representaciones de los principales objetos en una planta de Arquitectura, en base principalmente a la NCh745 para el caso de las puertas y ventanas. Cabe destacar que estas normas son válidas tanto para el dibujo a mano como mediante software. Representación de muros en planta y corte En el caso de la Arquitectura la representación de muros más utilizada es la línea de contorno sin relleno. Esta debe ir valorizada según la importancia jerárquica o estructural del elemento. Este tipo de representación es válido tanto en planta como en cortes de un proyecto. Los ejemplos de abajo ...

Leer más...

Comandos AutoCAD Tutorial 16: comandos Fillet, Chamfer y Blend curves

Fillet, Chamfer y Blend curvesEn este nuevo tutorial veremos tres comandos bastante útiles pero a la vez poco utilizados en AutoCAD, ya que trata sobre los comandos fillet, chamfer y blend curves respectivamente. Fillet se define como el “redondeo” de las esquinas en una forma recta 2D mientras que chamfer hace referencia al “chaflán”, ochavo o diagonal formada entre la esquina. En el caso de Blend curves, estas son las curvas de enlace que conectan líneas, curvas o splines abiertas. En este artículo veremos los tres comandos además de aplicaciones exclusivas de estos, e información complementaria respecto a su uso en el dibujo 2D y en otro tipo de trabajos. Si bien los comandos fillet y chamfer también funcionan en el universo 3D, en este tutorial no serán mencionados ya que por definición son comandos de 2D, además que en el caso de 3D tenemos un Fillet y un Chamfer especializados para ello.

Antes de empezar, lo primero que debemos saber es que en las versiones nuevas de AutoCAD los tres comandos comparten un solo botón en el panel modify (modificar). Podremos elegir cualquiera de ellos clickeando en la flecha lateral derecha que aparece al lado de “fillet” de tal forma que esta se vuelva azul, tal como se aprecia en la imagen:

Para ejemplificar el uso de los comandos fillet y chamfer realizaremos una sencilla forma la cual tendrá las medidas mostradas en la imagen siguiente:

Para el caso del comando Blend curves, lo haremos mediante líneas las cuales serán explicadas en la sección respectiva dedicada a este comando.

El comando Fillet

Como ya definimos antes, Fillet se refiere a un comando que redondeará o curvará las esquinas rectas o inclinadas de un dibujo en base a un arco de circunferencia. Para eso el programa tomará como base un trazado geométrico de enlace mediante paralelas de acuerdo con el siguiente esquema:

Para invocar al comando fillet podremos hacerlo seleccionando el ícono respectivo:

O también escribiendo fillet (o fil) en la barra de comandos. Al invocar el comando de cualquiera de las dos maneras, nos aparecerá lo siguiente:

Lo primero que debemos hacer será ir a la opción Radius ya que por defecto el radio de fillet será “0”, por lo que necesitaremos indicar un valor el cual será la base para realizar el redondeo. Para ello, podemos clickear directamente en la opción o escribir R y luego enter.

Una vez dentro de la opción, asignaremos un valor (en el ejemplo es 50) y presionamos enter. Es importante recalcar que el valor siempre deberá ser proporcional al tamaño del objeto. Es decir, si el lado menor de una esquina mide 100 de largo, lo máximo que podremos asignar es ese valor ya que valores mayores harán que fillet no funcione. Ahora volvemos a la forma que dibujamos al principio, asignamos el valor 100 en radius y luego elegiremos mediante un click la primera línea de una esquina de la forma:

Una vez elegida la primera línea, solamente bastará acercar el mouse hacia la segunda línea de la esquina para notar que ya se nos muestra una vista previa del redondeo.

Si hacemos click en la segunda línea, el redondeo se realizará en su totalidad y el comando se cierra de forma automática.

Si bien ya tenemos el redondeo realizado y por ende podremos volver a ejecutar el comando para realizar un siguiente fillet, este comando posee algunas opciones interesantes las cuales son:

Trim: permite decidir si queremos que los extremos se recorten o no. Por defecto trim está activado, es decir, los extremos se cortan al realizar el redondeo. Sin embargo, si entramos a la opción Trim y elegimos No trim, los extremos no se recortarán.

Fillet con Trim y No trim aplicado respectivamente.

Multiple: esta opción es bastante interesante pues si la seleccionamos, al ejecutar el primer fillet el comando no se cerrará sino que nos permitirá seguir ejecutando fillet en el resto de las esquinas de una o más formas, siempre tomando en cuenta el radio ya definido al invocar el comando (este puede cambiarse mientras se ejecuta esta opción).

Undo: si trabajamos la forma mediante la opción multiple, podremos deshacer el último fillet realizado al seleccionar esta opción.

Polyline: si la forma que dibujamos es una polilínea o esta está unificada mediante join, al elegir esta opción haremos que todas las esquinas de esta sean afectadas por fillet al mismo tiempo.

Para finalizar es importante dejar en claro que podremos ejecutar tantos fillet como esquinas tenga la forma, y no importa si esta no es un ángulo recto pues igualmente tomará en cuenta el valor del radio, aunque en este último caso no será tan notorio el redondeo. También podremos ejecutar el comando las veces que necesitemos y establecer varios radios diferentes en una misma forma para realizar formas más complejas.

Si tenemos el caso de esquinas que no formen un ángulo recto fillet se realizará de igual forma ya que como dijimos antes, este comando toma como referencia el trazado de enlaces paralelos.

En el ejemplo se aprecia un fillet de radio 100 en una esquina que no forma ángulo recto. Se ha acotado el radio de la curva para tener la ubicación precisa del centro de esta.

El comando Chamfer

El comando chamfer es una variación de fillet ya que también se refiere a modificar esquinas de intersecciones, pero a diferencia de aquel esta modificación no es un redondeo sino que será un “chaflán” o diagonal entre las esquinas, y que tomará como base el punto final de una “distance 1” y otro de una “distance 2” (que parten desde cada esquina) para formar la diagonal, de acuerdo al esquema siguiente:

Para invocar al comando chamfer podremos hacerlo seleccionando el ícono respectivo:

O también escribiendo chamfer (o cha) en la barra de comandos. Al invocar el comando de cualquiera de las dos maneras, nos aparecerá lo siguiente:

Lo primero que debemos hacer será ir a la opción Distance ya que debemos definir la medida de la distancia 1 (distance 1) y la distancia 2 (distance 2) puesto que el valor de estas por defecto es “0”, y por supuesto serán la base para realizar el chaflán. Para ello, podemos clickear directamente en la opción o escribir D y luego enter. Una vez dentro de distance, asignaremos un valor (en el ejemplo es 100) y presionamos enter:

En este caso notaremos que la distancia 1 que asignamos se nos repetirá por defecto cuando el programa nos pregunte el valor de la segunda distancia. Dejamos la distancia en 100 y presionamos enter:

Ahora nos vamos a cualquier esquina de la forma que realizamos y mediante click elegiremos la primera línea a la cual quedará asociada la distancia 1. Al hacerlo notamos que la línea queda resaltada.

Si nos acercamos a la segunda línea y no hacemos nada, automáticamente se nos mostrará la “vista previa” del chaflán o diagonal entre las esquinas. Para confirmar el chaflán, clickeamos en la segunda línea y con esto ya esta finalizado nuestro chamfer. Notaremos que al igual que en fillet, el comando se cierra de manera automática.

Es importante recalcar que en el caso de chamfer, los valores de distance 1 y distance 2 no necesariamente son iguales, ya que podremos tener el mismo valor para ambos o estos pueden ser completamente diferentes. Al igual que en el caso de fillet, debemos tomar en cuenta el largo de cada línea de la esquina ya que el máximo valor que podemos asignar es el de la línea más corta, pues valores superiores harán que chamfer no funcione. Otra cosa importante a recalcar es que la primera línea que elijamos tomará siempre el valor de distance 1, mientras que la segunda será distance 2 y por ende repercutirá en el resultado final, sobre todo si ambos valores son diferentes.

En el ejemplo se ha asignado el valor 100 para distance 1 y 200 para distance 2, y se ha seleccionado la línea vertical como primera línea. Notamos que el valor de 200 se coloca en la línea horizontal.

El mismo ejemplo anterior pero esta vez se ha seleccionado la línea horizontal como primera línea. Notamos que el valor de 200 se coloca ahora en la línea vertical.

Si bien ya tenemos el chaflán realizado y por ende podremos volver a ejecutar el comando para realizar un siguiente chamfer, este comando posee algunas opciones interesantes las cuales son:

Trim: permite decidir si queremos que los extremos se recorten o no. Por defecto trim está activado, es decir, los extremos se cortan al realizar el redondeo. Sin embargo, si entramos a la opción Trim y elegimos No trim, los extremos no se recortarán.

Chamfer con Trim y No trim aplicado respectivamente.

Multiple: esta opción es bastante interesante pues si la seleccionamos, al ejecutar el primer chamfer el comando no se cerrará sino que nos permitirá seguir ejecutando chamfer en el resto de las esquinas de una o más formas, siempre tomando en cuenta las distancias ya definidas al invocar el comando (estas pueden cambiarse mientras se ejecuta esta opción).

Undo: si trabajamos mediante la opción multiple, podremos deshacer el último chamfer realizado al seleccionar esta opción.

Polyline: si la forma que dibujamos es una polilínea o esta está unificada mediante join, al elegir esta opción haremos que todas las esquinas de esta sean afectadas por chamfer al mismo tiempo.

Method: esta opción establece el método de corte utilizado para generar el chamfer, y tenemos dos métodos posibles: Distance y Angle. Elegiremos cualquiera de los métodos eligiendo la opción respectiva o escribiendo D (distance) o A (angle) respectivamente, y luego presionando enter.

El método Distance es el que aparece por defecto y consiste simplemente en definir los valores de distance 1 y distance 2 respectivamente. El método Angle en cambio, nos permite definir sólo la magnitud de la primera distancia (llamada “lenght of the first line“) para luego definir el ángulo en el cual se inclina la diagonal respecto de esta, que generará la magnitud de distance 2 y finalizará el chamfer. Ambos métodos pueden esquematizarse en la siguiente imagen:

De izquierda a derecha: método distance y método angle.

Tip: en el método angle, si queremos tener el mismo valor en distance 1 y 2 bastará con dejar el valor del ángulo en 45.

Para ejemplificar el método angle primeramente elegimos el método mediante method, seleccionamos la opción angle y colocamos el valor 100 en distance (lenght of the first line). Cuando nos pregunte el ángulo o angle, escribiremos el valor 60. Ahora elegimos la primera línea y luego la segunda para ver el resultado:

Chamfer aplicado mediante el método angle.

En el ejemplo notamos claramente que al elegir la primera y luego la segunda línea, automáticamente se muestra la vista previa con el valor de distance 1 (línea vertical) y el ángulo de 60° que nos define a la vez el valor de distance 2 (línea horizontal). En el segundo ejemplo de abajo se ha aplicado el mismo método pero esta vez con la opción polyline, donde notamos que se seleccionan todas las esquinas menos la interior, puesto que en este caso es imposible debido a la medida de la línea que se configuró para realizar el chamfer.

Para finalizar es importante dejar en claro que podremos ejecutar tantos chamfer como esquinas tenga la forma y no importa si esta no es un ángulo recto porque chamfer se realizará de igual forma, ya que este comando toma como referencia el punto de intersección entre las extensiones proyectadas de cada línea y por tanto respetará las distancias y/o ángulo que definamos. También podremos ejecutar el comando las veces que necesitemos y establecer varios chaflanes diferentes en una misma forma para realizar formas más complejas.

En el ejemplo el valor de distance 1 es 150 y el de distance 2 es 100, aplicados mediante chamfer a una esquina que no forma ángulo recto.

El comando Blend curves (Blend)

Este comando es bastante sencillo en su utilización y además de eso es muy útil y práctico, pues consiste en enlazar de forma automática y mediante curvas de tipo Spline, cualquier línea o curva no importando si es una recta, curva o una spline siempre y cuando estas estén abiertas. Para ejemplificar este comando nos bastará realizar un par de líneas abiertas de cualquier tipo que serán la base para el enlace, de forma parecida a los ejemplos de abajo:

Ejemplo de líneas abiertas, de arriba hacia abajo: líneas rectas, arcos de circunferencia y líneas spline.

Para invocar al comando Blend podremos hacerlo seleccionando el ícono respectivo:

O también escribiendo blend (o ble) en la barra de comandos. Al invocar el comando de cualquiera de las dos maneras, nos aparecerá lo siguiente:

En este caso aplicaremos el comando en las líneas rectas, y este será tan sencillo como elegir la primera forma con un click, y luego elegir la otra para realizar el enlace pedido:

Podemos probar en las siguientes formas para ver el cómo se aplica la curva de enlace en ellas:

Aplicación de Blend curve en arcos de circunferencia.

Aplicación de Blend curve en curvas spline.

En estos casos notamos que la curva de enlace es de otro color y tipo ya que en el ejemplo se ha cambiado el layer antes de aplicar blend, para mostrar que las curvas resultantes no están unificadas sino que son independientes respecto de las curvas originales. Si queremos darles continuidad, bastará unificarlas mediante join (J). Si las unificamos, la curva resultante siempre será una curva de tipo spline y tomará el layer de la curva de enlace, independiente del tipo de curva que hayamos realizado antes.

Unificando las curvas mediante Join y obteniendo la spline editable como resultado.

Si bien ya tenemos el enlace realizado y por ende podremos volver a ejecutar el comando para realizar un siguiente blend, este comando posee su única opción la cual es:

Continuity: nos permite definir el método de continuidad utilizado para generar la curva de enlace, y tenemos dos tipos posibles: Tangent Smoooth.

La diferencia entre ambos es más bien el grado de sinuosidad de la curva, ya que en la opción tangent se toman las tangentes a las líneas como base haciendo menos sinuosa la curva, mientras que en Smooth esta es más bien un “suavizado” de esta haciendo que por ende sea más sinuosa. En las imágenes siguientes podemos ver las diferencias entre ambos tipos en los distintos tipos de líneas y curvas:

Finalmente nos queda por decir que la curvatura resultante, al ser una spline editable, podrá ser editada de la misma forma que una spline corriente ya que podremos mover sus puntos de control o cambiar el método de generación de la curva (CV o Fit).

Este es el fin de este Tutorial.

Temas y Tutoriales relacionados

Print Friendly, PDF & Email
[Total: 0    Average: 0/5]

Deje un comentario en este artículo

Publicidad
Otras webs del autor

TFCatalog.cl es un blog donde se revisan periódicamente figuras (juguetes) del universo Transformers, además de ser un catálogo personalizado de colección la cual está categorizada según línea.

http://www.tfcatalog.cl
Donar a MVBlog

Si le gusta esta web puede ayudar a mejorar su contenido, su calidad y a mantener activo este proyecto mediante su donación vía Paypal.

 
 

Publicidad
Suscríbase a MVBlog y reciba los últimos tutoriales, noticias y posts acerca de CAD, 3D y dibujo:
Gracias a FeedBurner
Reserve Hoteles

Si gusta de viajar, reserve alojamiento en booking.com y así ayuda a colaborar con este proyecto:
booking.com

Translate MVBlog to
Buscar en Google


Encuesta

El tema que más le interesa del blog es...

View Results

Loading ... Loading ...
Publicidad
Ultimos Apuntes
Ultimos AutoCAD
Ultimos Tutoriales 3D
Bibliografía (al azar)
Publicidad
Archivo de MVBlog
Tráfico del blog
  • 297689Total Visitas:
  • 374Visitas hoy:
  • 1478Visitas ayer:
  • 8548Visitas semana:
  • 14545Visitas por mes:
  • 1,168Visitas por día:
  • 5Visitantes online:
  • 17/03/2018Inicio: