Tutoriales y apuntes recomendados

Tutorial 14: Inserción de referencias o XREF, aplicado en 3D

Como ya lo hicimos anteriormente en el tutorial correspondiente a AutoCAD 2D, definiremos como referencias externas o "XREFs" a archivos específicos que cumplen la función de servir como guía, calco o referencia para realizar dibujos complejos. Estos archivos pueden ser de imagen, del mismo software (DWG) o también de otros programas similares como Microstation. También explicamos el cómo se realizaban bloques o dibujos complejos utilizando esta técnica, pero en este nuevo tutorial llevaremos el concepto de XREF a la aplicación práctica en la gestión y modelado de proyectos tridimensionales. XREF nos servirá de sobremanera en proyectos 3D de carácter complejo ...

Leer más...

AutoCAD 2D Tutorial 06b, Cota Leader

Como sabemos, dibujar en AutoCAD tiene como fin llevar lo dibujado en la pantalla a la realidad mediante la construcción de una pieza, una máquina, un producto o un proyecto de Arquitectura. Para que eso sea posible, la teoría del dibujo técnico establece dos requisitos indispensables que deben cumplirse si se ha dibujado algo que ha de fabricarse en un taller (si es una pieza, máquina o un producto) o construirse en un terreno, si es que hablamos de una edificación: - Que las vistas del dibujo no permitan dudas respecto a su forma. - Que la descripción de su tamaño sea ...

Leer más...

Maquetería 04: Introducción y tipos de maquetas

Concepto de maquetería Definiremos como Maquetería al arte de fabricar maquetas. A partir de esto definiremos una "maqueta" como una representación tridimensional o 3D de un objeto o evento. La maqueta puede ser funcional o no y además puede representar eventos u objetos reales o ficticios: Maqueta de una escena ferroviaria, en escala H0 (1:87). En este tipo de maquetas los trenes y las señales ferroviarias funcionan gracias a un complejo sistema eléctrico. Maqueta de la X-Wing de Star Wars, en escala 1:29. Este tipo de maquetas poseen funciones como abrir la cabina, mover las alas o una base para exhibición. La maqueta generalmente se suele ...

Leer más...

Maquetería 06: Materiales para maquetería

Uno de los fines de la maquetería es la representación de los proyectos y/o elementos de la forma más realista posible. Por esto mismo es que los materiales que se utilicen deben emular de la mejor forma posible la materialidad, texturas o colores del proyecto original como por ejemplo el concreto, el vidrio o la madera. Los materiales utilizados para la construcción de maquetas son muy variados, y de hecho prácticamente cualquier material puede utilizarse para este fin. Sin embargo en el mercado encontraremos varios materiales especialmente creados para este arte. Los materiales principales utilizados son los siguientes: El Cartón El cartón es ...

Leer más...

Comandos AutoCAD Tutorial 03: helpers o ayudantes de dibujo

En AutoCAD ya hemos aprendido las unidades básicas de dibujo y las cuatro formas en que podemos realizar estos en el programa. Sin embargo, dibujar elementos y formas complejos es algo difícil ya que el espacio donde trabajamos es un plano de carácter “ilimitado” y por ello es difícil colocar límites claros para nuestro trabajo y además de eso, es difícil dibujar "a pulso" en el programa sin cometer errores. Por esto mismo, AutoCAD pone a nuestra disposición una serie de ayudantes para nuestros dibujos llamados Helpers, de modo de facilitar la ejecución de estos y por ende, ahorrar tiempo ...

Leer más...

Comandos AutoCAD Tutorial 04: referencia a objetos (OSNAPS)

Si bien en un tutorial anterior estudiamos el concepto de coordenadas X e Y en AutoCAD y que evidentemente el programa lo sigue utilizando como base para el dibujo 2D y 3D, estas fueron pensadas originalmente para equipos sin las capacidades de hoy en día, cuando las primeras versiones de AutoCAD sólo tenían textos y la famosa barra de comandos. En ese entonces los comandos e instrucciones se ejecutaban exclusivamente desde el teclado escribiendo el nombre del comando en la barra y luego presionando la tecla enter. Gracias al avance de la informática y por ende del programa mismo, hoy ...

Leer más...

Comandos AutoCAD Tutorial 12: comandos Move y Copy

En este tutorial veremos los diferentes comandos de transformaciones move y copy en AutoCAD los cuales, como sus nombres lo indican, nos permitirán desplazar y/o copiar uno o más objetos hacia cualquier posición del área de dibujo. Además veremos aplicaciones exclusivas del comando copy como Array, el cual nos permitirá no solo copiar una gran cantidad de elementos sino que también nos permite distribuirlos en torno a un elemento o distancia. El comando Move Un comando importantísimo en AutoCAD es el llamado mover o simplemente move. Move nos permitirá mover desde una posición a otra uno o más elementos del dibujo sean estos ...

Leer más...

Comandos AutoCAD Tutorial 15: el comando Array

En este nuevo tutorial veremos otro de los comandos más versátiles de AutoCAD, ya que se trata del comando llamado array o lo que es lo mismo, la copia de objetos mediante matrices o arreglos las cuales permiten distribuir copias en el espacio y pueden ser de tipo rectangular, polar o en referencia a un recorrido o también llamado path. En este artículo veremos los tres tipos de matriz que posee el comando array además de aplicaciones exclusivas (mediante ejemplos y archivos) de este comando, e información complementaria respecto a su uso en el dibujo 2D y en otro tipo de ...

Leer más...

AutoCAD 2D Tutorial 06: Acotación y estilos de cota

Como sabemos, dibujar en AutoCAD tiene como fin llevar lo dibujado de la pantalla a la realidad mediante la construcción de una pieza, una máquina, producto o un proyecto de Arquitectura. Para que eso sea posible, la teoría del dibujo técnico establece dos requisitos indispensables que deben cumplirse si se ha dibujado algo que ha de fabricarse en un taller (si es una pieza, máquina o un producto) o construirse en un terreno, si es que hablamos de una edificación: - Que las vistas del dibujo no permitan dudas respecto a su forma. - Que la descripción de su tamaño sea exacta. ...

Leer más...

AutoCAD 2D Tutorial 09: layout y diseño para impresión

El final de cualquier dibujo que realicemos en AutoCAD se refleja siempre en el dibujo impreso. Para los arquitectos, por ejemplo, AutoCAD es ideal para la elaboración de planos, auténtica materia prima para su trabajo en el desarrollo y supervisión de una construcción. Sin embargo, AutoCAD es además una excelente herramienta para el diseño, lo que implica que solamente nos concentraremos en realizar el dibujo sin preocupaciones, ya que no importa si los dibujos están o no dispuestos de manera adecuada para elaboración del soporte (plano) ya que para esto tenemos el layout, el cual nos permitirá configurar el dibujo ...

Leer más...

Dibujo Técnico: tipos de perspectivas

Acerca de las perspectivas Para la representación de objetos en el dibujo técnico se utilizan diversas proyecciones que se traducen en vistas de un objeto o proyecto, las cuales suelen ser los planos o vistas 3D que nos permiten la interpretación y construcción de este. El dibujo técnico consiste en esencia en representar de forma ortogonal varias vistas cuidadosamente escogidas, con las cuales es posible definir de forma precisa su forma, dimensiones y características. Además de las vistas tradicionales en 2D se utilizan proyecciones tridimensionales representadas en dos dimensiones llamadas perspectivas. Los cuatro tipos de perspectivas base son: Isométrica (ortogonal) Militar (oblicua) Caballera (oblicua) Cónica ...

Leer más...

Dibujo Técnico: convenciones sobre el dibujo de Arquitectura

Acerca del dibujo arquitectónico Como ya sabemos, la expresión gráfica que se utiliza en la Arquitectura está definida por un conjunto de especificaciones y normas y a la vez estas son parte de lo que conocemos como dibujo técnico. El ojo humano está diseñado para ver en 3 dimensiones: largo, alto y ancho. Sin embargo, estas sufren distorsión dependiendo de la distancia y la posición donde esté situada la persona respecto al objeto que se observa. Por lógica no podríamos construir ese objeto si lo dibujásemos “tal cual” lo vemos, ya que para ello fuera posible el objeto tendría que mantener su ...

Leer más...

Dibujo Técnico: tipos de línea, grosores y usos

Las líneas en Arquitectura y en Ingeniería Las líneas en arquitectura y en dibujo técnico cumplen un papel fundamental en la representación de nuestro proyecto, pues nos permiten definir las formas y las simbologías precisas para la correcta interpretación y posterior construcción de este. Sin los distintos tipos de línea nuestro dibujo se parecería más a un dibujo artístico y sin los grosores, nuestro dibujo pasaría a ser plano y no sería comprendido en su totalidad por el ejecutante o constructor. Las líneas se clasifican, según la NCh657, en los siguientes tipos y clases: Los tipos de líneas se usan según los ...

Leer más...

Dibujo Técnico: la escala y sus aplicaciones

La escala de los planos Como ya sabemos, si dibujamos un proyecto de arquitectura o un objeto grande es imposible que lo podamos hacer "a tamaño real" pues los formatos de papel son limitados a un ancho máximo de 1,2 mts, y además por razones prácticas (tamaño, peso, transporte y portabilidad) y de lectura es inviable. Plano en tamaño real de Vardehaugen. A pesar de ser un concepto muy interesante y bonito de apreciar, nos muestra el problema de "dibujar" un proyecto en su tamaño verdadero. Si por el contrario dibujamos un objeto muy pequeño en un papel tenemos un problema similar, ya ...

Leer más...

AutoCAD 3D Tutorial 02: Modelado 3D con primitivas (templo griego)

Uno de los principios básicos del modelado 3D es que todos los objetos que existen en la realidad y en la naturaleza nacen a partir de las llamadas "primitivas". Una primitiva se define como la geometría 3D o Poliedros básicos que pueden representarse tridimensionalmente mediante maquetas físicas o virtuales. Una de las características más importantes de estas es que si estas se modifican y/o editan ya sea mediante adición de estas, sustracción u otras acciones, van definiendo formas mucho más complejas. Por esto mismo y al igual que en cualquier otro programa 3D, en AutoCAD existen geometrías 3D llamadas “primitivas básicas” ...

Leer más...

AutoCAD 3D Tutorial 11: Consejos para un buen modelo 3D

En este tutorial se pretende dar consejos para realizar una buena gestión del modelado 3D en AutoCAD sin morir en el intento (o lo que es igual, sin que nuestro computador colapse y/o que nuestro archivo 3D pese demasiados megas). Estos consejos están basados fundamentalmente en mi experiencia como docente y sobre todo como modelador y animador 3D, y la idea es que estos les sean útiles para todos quienes quieran gestionar de forma eficiente sus modelos 3D en AutoCAD, o para quienes están comenzando a realizar sus primeros proyectos. Para el correcto modelado 3D es necesario seguir ciertas pautas o ...

Leer más...

AutoCAD 3D Tutorial 13: UCS, aplicación en modelado 3D

En esta ocasión y dado que hacía mucho tiempo que no se realizaba un tutorial sobre modelado en AutoCAD 3D, hoy nos corresponde mostrar uno de los comandos más eficientes y a la vez de los menos utilizados en el mundo del 3D de AutoCAD: se trata del comando llamado UCS o "User Coordinate System" ya que este es un sistema que nos permite modificar la posición del sistema standard de los ejes coordenados (X,Y,Z), para adaptarlo a cualquier lugar y/o posición para así facilitar el modelado y/o adición o sustraccion de elementos. En esta ocasión modelaremos la estructura en ...

Leer más...

Planimetría 01: Planta de Arquitectura

Definiremos la planta de Arquitectura como un CORTE de tipo HORIZONTAL del edificio o proyecto mediante un plano virtual el cual a su vez remueve la parte superior del edificio. Este corte se realiza usualmente a 1,20 o 1,40 mts y nos sirve para definir la estructura y los espacios principales del proyecto o edificación, en su largo y ancho. La planta es fundamental para comprender un proyecto pues las proporciones y dimensiones de esta son la base para la construcción de este. El concepto queda graficado en el siguiente ejemplo: En el caso de la planta en particular, al estar el plano ...

Leer más...

Planimetría 02: Corte de Arquitectura

Podemos definir un corte de Arquitectura como una sección o "corte" (valga la redundancia) mediante un plano VERTICAL de una edificación, edificio o proyecto de Arquitectura, y nos sirve para definir la relación de escala, proporción, alturas y los elementos estructurales del proyecto frente al contexto. A diferencia de la planta, el corte puede en teoría efectuarse en cualquier parte del proyecto y por ello deberá definirse mediante una señalización de este en la planta y además tener un "sentido", es decir, una dirección hacia donde queremos visualizar los elementos del corte mismo. Este concepto se puede graficar mediante el siguiente ...

Leer más...

Planimetría 03: Elevaciones en Arquitectura

Definiremos como elevaciones a las proyecciones ortogonales bidimensionales de TODAS las caras visibles de un proyecto, vivienda o edificio, utilizando la ya conocida proyección ortogonal de puntos. Estas caras se proyectan en planos imaginarios paralelos a la cara en cuestión y por ello, pueden ser representadas mediante planos bidimensionales. Las elevaciones también se denominan fachadas o alzados. El concepto de las elevaciones puede graficarse en el siguiente esquema: En el esquema notamos que el Norte geográfico está representado en el modelo ya que el nombre de cada cara dependerá de su ubicación geográfica respecto al terreno. El resultado de la proyección de cada ...

Leer más...

Planimetría 04: Representación en planos de muros, puertas y ventanas

En este apunte se muestran las representaciones de los principales objetos en una planta de Arquitectura, en base principalmente a la NCh745 para el caso de las puertas y ventanas. Cabe destacar que estas normas son válidas tanto para el dibujo a mano como mediante software. Representación de muros en planta y corte En el caso de la Arquitectura la representación de muros más utilizada es la línea de contorno sin relleno. Esta debe ir valorizada según la importancia jerárquica o estructural del elemento. Este tipo de representación es válido tanto en planta como en cortes de un proyecto. Los ejemplos de abajo ...

Leer más...

AutoCAD 3D Tutorial 12: UCS o User Coordinate System

En esta ocasión y dado que hacía mucho tiempo que no se realizaba un tutorial sobre modelado en AutoCAD 3D, hoy nos corresponde mostrar uno de los comandos más eficientes y a la vez de los menos utilizados en el 3D: se trata del comando UCS  o User Coordinate System ya que este es un sistema que nos permite modificar la posición del sistema standard de los ejes coordenados, para adaptarlo a cualquier lugar y/o posición para así facilitar el modelado. En esta ocasión veremos las aplicaciones básicas de esta importante función e iremos conociendo las diversas opciones de este comando. En un siguiente tutorial modelaremos una estructura en 3D aplicando algunas de las funciones de este comando.

UCS o User Coordinate System

UCS (o SCP en español) es un sistema personalizado de coordenadas que consiste básicamente en alterar o modificar la posición original del sistema de ejes coordenados X, Y y Z (usando principalmente el plano “XY”), ya que si elegimos el template acadiso o ingresamos al modo de 3D, por defecto el plano XY se encuentra “acostado” en la vista perspectiva de AutoCAD 3D, tal como se muestra en la imagen siguiente:

Además de la posición del plano XY por defecto notamos que es visible el eje Z, y que al dibujar cualquier forma en 2D esta se reflejará en el plano XY ya que este es el plano se usa para dibujar en 2D de la forma tradicional.

Para invocar al comando UCS nos bastará con colocar ucs en la barra de comandos y luego presionar enter. Al hacerlo, nos aparecerá el siguiente cuadro de opciones:

Las opciones Face, NAmed, OBject, Previous, World, X, Y y Z serán vistas más adelante. Sin embargo, cuando invocamos el comando UCS notaremos que el programa por defecto nos pedirá ingresar el “origen” del UCS mismo ya que textualmente nos dice: “Specify origin of UCS”. Por lo tanto, podemos inferir que el UCS se definirá mediante 3 puntos que son:

– Punto 1: el origen del UCS o el origen de coordenadas (0,0,0).
– Punto 2: correspondiente a la dirección del eje X.
– Punto 3: correspondiente a la dirección del eje Y.

Con estos tres puntos formaremos una especie de triángulo virtual que a la vez nos definirá la dirección y posición del plano XY. Es por ello que al elegir los tres puntos, se configurará de manera automática este plano a la posición asignada en los ejes y el punto de origen será el primer punto designado. Podemos ejemplificar este concepto si dibujamos una cuña o wedge de cualquier medida y realizamos lo siguiente:

1) Invocamos el comando UCS y cuando el programa nos pida elegir el punto de origen, elegiremos mediante click el punto indicado en la imagen.

2) Al hacerlo notaremos que el eje se asienta en el punto escogido y que podremos mover el eje X de forma libre, para poder definir el siguiente punto.

Ahora, elegiremos mediante click el segundo punto en donde indica la imagen.

3) Con esto ya habremos colocado el eje X en su lugar y por supuesto notamos que es el eje Y el cual se mueve ahora. Para terminar, elegiremos mediante click el tercer punto en donde indica la imagen.

Al determinar el tercer punto notaremos que el comando se cierra y ahora el plano XY se ha colocado “encima” de la diagonal de la cuña, tomando como origen (0,0,0) el primer punto que elegimos (el extremo inferior de la cuña).

Un aspecto interesante de este ejemplo y del comando en cuestión es que si dibujamos cualquier forma ya sea en 2D y/o 3D, esta se dibujará ahora en la diagonal de la cuña pues al estar el plano XY encima de esta, lo tomara de igual forma que cuando dibujamos en 2D de forma tradicional ya que lo que hemos hecho es simplemente “cambiar” el plano XY a esta nueva ubicación y posición.

Ahora bien, si queremos volver al UCS por defecto, nuevamente invocaremos al comando UCS y una vez allí elegiremos la opción World (W), o escribimos W y luego presionamos enter.

Tip: también podremos volver al UCS por defecto si una vez que invocamos al comando UCS presionamos nuevamente enter, ya que la opción world se encuentra habilitada por defecto.

La importancia de conocer y aplicar correctamente el comando UCS es que podremos utilizarlo para modelar elementos de difícil realización como techumbres o cubiertas inclinadas, ya que podremos dibujarlas y/o modelarlas directamente desde las pendientes mediante este comando. También podremos dibujar los elementos constructivos en cualquier “cara” de una forma 3D y luego desde allí ir adicionando o sustrayendo materia para dar forma a lo deseado.

Dynamics UCS o DUCS

Otra cosa que es importante aclarar es que además del UCS tradicional tenemos una función de UCS llamada UCS Dinámico o Dynamics UCS (DUCS), el cual nos permitirá colocar el UCS en cualquier cara de un objeto de forma automática aunque esta opción tiene sus limitaciones ya que a diferencia del comando UCS, no podremos dejar el plano de forma “definitiva” en la ubicación ya que Dynamics UCS es una función temporal. Además, para que DUCS funcione se debe ejecutar previamente un comando de dibujo o de modelado 3D antes se seleccionar este, ya que de otra forma no funcionará. Para invocarlo, debemos presionar el siguiente símbolo en la parte inferior del programa:

Símbolo de DUCS en AutoCAD 2013.

Símbolo de DUCS en AutoCAD 2017.

También podremos activar o desactivar Dynamics UCS mediante la tecla F6.

En el ejemplo se modela una caja o box encima de la diagonal de una cuña, utilizando la función DUCS o UCS Dinámico.

Ejemplo de aplicación de UCS

Para aplicar este comando podemos hacer un sencillo ejercicio dibujando una box de 400 x 600 x 500, luego usamos el comando UCS para posicionar el plano XY en la diagonal (tomando los puntos medios como referencia), luego dibujamos una caja más grande en el plano XY ya creado para finalmente sustraerla de la caja original. En las imágenes de abajo se registra todo este proceso:

La caja de 400 x 600 x 500 original.

Colocando el plano XY mediante UCS, tomando como referencia los puntos medios de los lados de la caja.

Insertando la caja mayor en el plano ya creado y luego efectuando la sustracción (mediante subtract) respecto a la caja original.

Si repetimos el proceso en el otro lado de la caja, podremos realizar una cubierta de dos aguas de forma básica.

El menú UCS y sus funciones

En AutoCAD 2017 disponemos de un grupo llamado Coordinates el cual puede ser visible desde el menú Visualize. En este grupo podremos ver todo lo relacionado a UCS y sus funciones principales, las cuales son las siguientes:

1) UCS Icon: 

Maneja las propiedades del ícono de UCS (sólo en estilo visual 2D Wireframe). En este caso, al activar esta opción ingresamos al siguiente cuadro de opciones de UCS:

Donde tenemos lo siguiente:

– UCS Icon Style: en este caso podremos elegir entre el estilo 2D (AutoCAD 12 antiguo) o 3D según queramos. Si modificamos el parámetro Line width podremos elegir entre 3 grosores diferentes.

UCS Icon 2D y 3D respectivamente.

Modificando el grosor del ícono mediante Line width.

– UCS Icon size: en este caso podremos cambiar el tamaño del icono UCS. Por defecto el tamaño del icono es de 50, mientras que el tamaño máximo es de 95.

UCS Icon en el espacio 3D, en tamaños 5 y en 95 respectivamente.

– UCS Icon color: en este caso podremos cambiar el color del icono UCS tanto en el espacio modelo como en el layout o paper space. Si desmarcamos la casilla Apply single color, el icono se nos mostrará en el espacio modelo con los colores reglamentarios de los ejes X, Y y Z (rojo, verde y azul).

Modificando el color del icono UCS en model.

Modificando el color del icono UCS en model pero con la casilla Apply single color desactivada.

Modificando el color del icono UCS en layout.

2) UCS:

Maneja el comando UCS. En este caso es el equivalente de invocar al comando “UCS” en la barra de comandos. Al seleccionarlo nos aparece lo siguiente:


En estas opciones podremos definir parámetros generales como View, World, ejes X, Y, Z o colocar un nombre al UCS entre otras opciones, las cuales se verán a continuación.

3) UCS Name:

Administra UCS definidos. Esta opción nos permite definir UCS personalizados y activarlos según corresponda. También podremos definir el nombre de nuestro propio UCS. También podremos asignar un nombre a nuestro UCS personalizado si en la barra de comandos escribimos UCS (enter) y luego elegimos la opción NAmed.

En el ejemplo se ha definido el UCS personalizado. Al ejecutar UCS Name nos aparece el cuadro de opciones y el UCS nos aparece como “unnamed”. Si presionamos el botón secundario en este, podremos renombrarlo mediante Rename o dejarlo activo mediante Set Current. En este último caso, el UCS definido quedará activo en el espacio de trabajo y por ende podrá ser utilizado de forma inmediata.

En el ejemplo de la imagen de abajo se ha renombrado el UCS a “diagonal” y este automáticamente queda guardado; también lo podremos dejar activo mediante Set Current o borrarlo si presionamos la tecla Supr.

4) World:

Vuelve al UCS por defecto. También podremos volver al UCS por defecto (origen y plano definido en AutoCAD) si en la barra de comandos ejecutamos el comando UCS (enter) y luego elegimos la opción (enter).

En el ejemplo se ha ejecutado el comando UCS estando el UCS personalizado llamado “diagonal” activo.

El mismo ejemplo anterior pero esta vez, el UCS original de AutoCAD se ha restaurado mediante la ejecución del comando UCS y luego eligiendo W.

5) Previous: 

Vuelve al último UCS realizado. En este caso puntual es una especie de “undo” o deshacer puesto que al seleccionar esta opción, volveremos al último UCS que hemos realizado o que definimos previamente. También podremos realizarlo si en la barra de comandos ejecutamos UCS (enter) y luego P (enter).

6) Origin: 

Cambia el punto de origen del UCS. Si seleccionamos esta opción, podremos tomar el punto de origen y moverlo hacia cualquier otra ubicación, tanto en el espacio 3D como en cualquier cara, lado o vértice de una figura.

7) ZAxis-vector:

Crea el eje Z a partir de 2 puntos específicos. En este caso el plano XY será perpendicular al eje Z el cual definiremos mediante dos puntos: el primero será el origen del UCS y el segundo definirá la dirección del eje Z. También podremos crear el UCS desde el eje Z si en la barra de comandos escribimos UCS (enter) y luego escribimos la opción ZA (enter).

8) 3 points:

Crea el UCS alrededor de 3 puntos definidos. Especifica el origen y la dirección del plano XY. Esta es la opción por defecto al invocar el comando UCS ya que el primer punto será el origen del sistema, el segundo punto será la dirección del eje X y el tercero será la dirección del eje Y, ya explicado al principio del tutorial.

9) X:

Rota el plano en torno al eje X. Se debe especificar el ángulo. Si elegimos esta opción, el plano XY girará en torno al eje X según el ángulo que le especifiquemos. También podremos realizarlo si en la barra de comandos ejecutamos UCS (enter), luego (enter) y finalmente establecer el valor del ángulo (enter).

Rotando el plano XY en torno al eje X, estableciendo un ángulo de 45°.

Rotando el plano XY en torno al eje X, estableciendo un ángulo de 90°.

10) Y:

Rota el plano en torno al eje Y. Se debe especificar el ángulo. Si elegimos esta opción, el plano XY girará en torno al eje Y según el ángulo que le especifiquemos. También podremos realizarlo si en la barra de comandos ejecutamos UCS (enter), luego Y (enter) y finalmente establecer el valor del ángulo (enter).

Rotando el plano XY en torno al eje Y, estableciendo un ángulo de 45°.

Rotando el plano XY en torno al eje Y, estableciendo un ángulo de 90°.

11) Z:

Rota el plano en torno al eje Z. Se debe especificar el ángulo. Si elegimos esta opción, el plano XY girará en torno al eje Z según el ángulo que le especifiquemos. También podremos realizarlo si en la barra de comandos ejecutamos UCS (enter), luego (enter) y finalmente establecer el valor del ángulo (enter).

Rotando el plano XY en torno al eje Z, estableciendo un ángulo de 45°.

Rotando el plano XY en torno al eje Z, estableciendo un ángulo de 90°.

12) View:

Establece el UCS con el plano XY paralelo a la pantalla. En este caso, al seleccionar esta opción el eje Z apuntará hacia nosotros, de la misma forma que cuando dibujamos en 2D, independiente de la perspectiva o posición del objeto en el espacio. También podremos realizarlo si en la barra de comandos ejecutamos UCS (enter) y luego elegimos View.

13) Object:

Alinea el UCS con un objeto seleccionado. En este caso podemos tomar cualquier cara de este y colocarle el plano XY encima. También podremos realizarlo si en la barra de comandos ejecutamos UCS (enter), luego elegimos OBject y finalmente seleccionamos la cara del objeto en el cual aplicaremos el plano.

14) Face:

Alinea el plano XY con una cara seleccionada (sólidos, superficies o meshes). En este caso podremos elegir la cara en la cual se alineará el plano XY. También podremos realizarlo si en la barra de comandos ejecutamos UCS (enter) y luego (enter).

Al seleccionar una cara nos aparecerá el siguiente cuadro de opciones:

Donde tenemos lo siguiente:

Next: selecciona la cara siguiente.

XFlip: voltea el plano XY cambiando el sentido del eje Z y del eje Y.

YFlip: voltea el plano XY cambiando el sentido del eje Z y del eje X.

15) Mostrar UCS: 

Muestra u oculta el sistema de ejes. En este caso disponemos de tres opciones diferentes las cuales son:

– Show UCS Icon at Origin: muestra el icono de UCS en el punto de origen.

– Show UCS Icon: Muestra el icono de UCS pero no lo muestra en el punto de origen, sino que en la parte inferior izquierda de la pantalla.

– Hide UCS Icon: esconde el icono de UCS de la pantalla.

16) UCS combo:

Alinea el UCS según la vista que seleccionemos. En esta opción tenemos varios UCS predefinidos y que podremos ejecutar según la vista seleccionada en el espacio de trabajo, además del ya conocido World.

UCS Combo en la vista Top.

UCS Combo en la vista Bottom.

UCS Combo en la vista Left.

UCS Combo en la vista Right.

UCS Combo en la vista Front.

UCS Combo en la vista Back.

En una siguiente parte del tutorial se modelará una estructura 3D aplicando algunas de las funciones del comando UCS, ya que en esta segunda parte veremos un ejemplo de aplicación más complejo y a la vez una alternativa de modelado a lo ya tradicional.

Este es el fin de este Tutorial.

image_pdfVer/descargar Versión PDFimage_printImprimir artículo
[Total: 0    Average: 0/5]
Facebooktwittergoogle_pluspinterestlinkedinmail
Temas relacionados  

Agregar un comentario

Su dirección de correo no se hará público. Los campos requeridos están marcados *

Publicidad
Otras webs del autor

TFCatalog.cl es un blog donde se revisan periódicamente figuras (juguetes) del universo Transformers, además de ser un catálogo personalizado de colección la cual está categorizada según línea.

http://www.tfcatalog.cl
¿Viaja? Reserve Hoteles

booking.com

Donar a MVBlog

Si le gusta esta web puede ayudar a mejorar su contenido, su calidad y a mantener activo este proyecto mediante su donación vía Paypal.

 
 

Suscríbase a MVBlog y reciba los últimos tutoriales, noticias y posts acerca de CAD, 3D y dibujo:
Gracias a FeedBurner
Translate MVBlog to
Publicidad
Buscar en Google


Encuesta

El tema que más le interesa del blog es...

View Results

Loading ... Loading ...
Ultimos Apuntes
Ultimos AutoCAD
Ultimos Tutoriales 3D
Bibliografía (al azar)
Archivo de MVBlog
Redes sociales
Facebooktwittergoogle_pluspinterestlinkedinyoutubemail
Tráfico del blog
  • 223105Total Visitas:
  • 356Visitas hoy:
  • 1804Visitas ayer:
  • 10175Visitas semana:
  • 21783Visitas por mes:
  • 1,403Visitas por día:
  • 6Visitantes online:
  • 17/03/2018Inicio:
Publicidad