Tutoriales y apuntes recomendados

Tutorial 14: Inserción de referencias o XREF, aplicado en 3D

Como ya lo hicimos anteriormente en el tutorial correspondiente a AutoCAD 2D, definiremos como referencias externas o "XREFs" a archivos específicos que cumplen la función de servir como guía, calco o referencia para realizar dibujos complejos. Estos archivos pueden ser de imagen, del mismo software (DWG) o también de otros programas similares como Microstation. También explicamos el cómo se realizaban bloques o dibujos complejos utilizando esta técnica, pero en este nuevo tutorial llevaremos el concepto de XREF a la aplicación práctica en la gestión y modelado de proyectos tridimensionales. XREF nos servirá de sobremanera en proyectos 3D de carácter complejo ...

Leer más...

AutoCAD 2D Tutorial 06b, Cota Leader

Como sabemos, dibujar en AutoCAD tiene como fin llevar lo dibujado en la pantalla a la realidad mediante la construcción de una pieza, una máquina, un producto o un proyecto de Arquitectura. Para que eso sea posible, la teoría del dibujo técnico establece dos requisitos indispensables que deben cumplirse si se ha dibujado algo que ha de fabricarse en un taller (si es una pieza, máquina o un producto) o construirse en un terreno, si es que hablamos de una edificación: - Que las vistas del dibujo no permitan dudas respecto a su forma. - Que la descripción de su tamaño sea ...

Leer más...

Maquetería 04: Introducción y tipos de maquetas

Concepto de maquetería Definiremos como Maquetería al arte de fabricar maquetas. A partir de esto definiremos una "maqueta" como una representación tridimensional o 3D de un objeto o evento. La maqueta puede ser funcional o no y además puede representar eventos u objetos reales o ficticios: Maqueta de una escena ferroviaria, en escala H0 (1:87). En este tipo de maquetas los trenes y las señales ferroviarias funcionan gracias a un complejo sistema eléctrico. Maqueta de la X-Wing de Star Wars, en escala 1:29. Este tipo de maquetas poseen funciones como abrir la cabina, mover las alas o una base para exhibición. La maqueta generalmente se suele ...

Leer más...

Maquetería 06: Materiales para maquetería

Uno de los fines de la maquetería es la representación de los proyectos y/o elementos de la forma más realista posible. Por esto mismo es que los materiales que se utilicen deben emular de la mejor forma posible la materialidad, texturas o colores del proyecto original como por ejemplo el concreto, el vidrio o la madera. Los materiales utilizados para la construcción de maquetas son muy variados, y de hecho prácticamente cualquier material puede utilizarse para este fin. Sin embargo en el mercado encontraremos varios materiales especialmente creados para este arte. Los materiales principales utilizados son los siguientes: El Cartón El cartón es ...

Leer más...

Comandos AutoCAD Tutorial 03: helpers o ayudantes de dibujo

En AutoCAD ya hemos aprendido las unidades básicas de dibujo y las cuatro formas en que podemos realizar estos en el programa. Sin embargo, dibujar elementos y formas complejos es algo difícil ya que el espacio donde trabajamos es un plano de carácter “ilimitado” y por ello es difícil colocar límites claros para nuestro trabajo y además de eso, es difícil dibujar "a pulso" en el programa sin cometer errores. Por esto mismo, AutoCAD pone a nuestra disposición una serie de ayudantes para nuestros dibujos llamados Helpers, de modo de facilitar la ejecución de estos y por ende, ahorrar tiempo ...

Leer más...

Comandos AutoCAD Tutorial 04: referencia a objetos (OSNAPS)

Si bien en un tutorial anterior estudiamos el concepto de coordenadas X e Y en AutoCAD y que evidentemente el programa lo sigue utilizando como base para el dibujo 2D y 3D, estas fueron pensadas originalmente para equipos sin las capacidades de hoy en día, cuando las primeras versiones de AutoCAD sólo tenían textos y la famosa barra de comandos. En ese entonces los comandos e instrucciones se ejecutaban exclusivamente desde el teclado escribiendo el nombre del comando en la barra y luego presionando la tecla enter. Gracias al avance de la informática y por ende del programa mismo, hoy ...

Leer más...

Comandos AutoCAD Tutorial 12: comandos Move y Copy

En este tutorial veremos los diferentes comandos de transformaciones move y copy en AutoCAD los cuales, como sus nombres lo indican, nos permitirán desplazar y/o copiar uno o más objetos hacia cualquier posición del área de dibujo. Además veremos aplicaciones exclusivas del comando copy como Array, el cual nos permitirá no solo copiar una gran cantidad de elementos sino que también nos permite distribuirlos en torno a un elemento o distancia. El comando Move Un comando importantísimo en AutoCAD es el llamado mover o simplemente move. Move nos permitirá mover desde una posición a otra uno o más elementos del dibujo sean estos ...

Leer más...

Comandos AutoCAD Tutorial 15: el comando Array

En este nuevo tutorial veremos otro de los comandos más versátiles de AutoCAD, ya que se trata del comando llamado array o lo que es lo mismo, la copia de objetos mediante matrices o arreglos las cuales permiten distribuir copias en el espacio y pueden ser de tipo rectangular, polar o en referencia a un recorrido o también llamado path. En este artículo veremos los tres tipos de matriz que posee el comando array además de aplicaciones exclusivas (mediante ejemplos y archivos) de este comando, e información complementaria respecto a su uso en el dibujo 2D y en otro tipo de ...

Leer más...

AutoCAD 2D Tutorial 06: Acotación y estilos de cota

Como sabemos, dibujar en AutoCAD tiene como fin llevar lo dibujado de la pantalla a la realidad mediante la construcción de una pieza, una máquina, producto o un proyecto de Arquitectura. Para que eso sea posible, la teoría del dibujo técnico establece dos requisitos indispensables que deben cumplirse si se ha dibujado algo que ha de fabricarse en un taller (si es una pieza, máquina o un producto) o construirse en un terreno, si es que hablamos de una edificación: - Que las vistas del dibujo no permitan dudas respecto a su forma. - Que la descripción de su tamaño sea exacta. ...

Leer más...

AutoCAD 2D Tutorial 09: layout y diseño para impresión

El final de cualquier dibujo que realicemos en AutoCAD se refleja siempre en el dibujo impreso. Para los arquitectos, por ejemplo, AutoCAD es ideal para la elaboración de planos, auténtica materia prima para su trabajo en el desarrollo y supervisión de una construcción. Sin embargo, AutoCAD es además una excelente herramienta para el diseño, lo que implica que solamente nos concentraremos en realizar el dibujo sin preocupaciones, ya que no importa si los dibujos están o no dispuestos de manera adecuada para elaboración del soporte (plano) ya que para esto tenemos el layout, el cual nos permitirá configurar el dibujo ...

Leer más...

Dibujo Técnico: tipos de perspectivas

Acerca de las perspectivas Para la representación de objetos en el dibujo técnico se utilizan diversas proyecciones que se traducen en vistas de un objeto o proyecto, las cuales suelen ser los planos o vistas 3D que nos permiten la interpretación y construcción de este. El dibujo técnico consiste en esencia en representar de forma ortogonal varias vistas cuidadosamente escogidas, con las cuales es posible definir de forma precisa su forma, dimensiones y características. Además de las vistas tradicionales en 2D se utilizan proyecciones tridimensionales representadas en dos dimensiones llamadas perspectivas. Los cuatro tipos de perspectivas base son: Isométrica (ortogonal) Militar (oblicua) Caballera (oblicua) Cónica ...

Leer más...

Dibujo Técnico: convenciones sobre el dibujo de Arquitectura

Acerca del dibujo arquitectónico Como ya sabemos, la expresión gráfica que se utiliza en la Arquitectura está definida por un conjunto de especificaciones y normas y a la vez estas son parte de lo que conocemos como dibujo técnico. El ojo humano está diseñado para ver en 3 dimensiones: largo, alto y ancho. Sin embargo, estas sufren distorsión dependiendo de la distancia y la posición donde esté situada la persona respecto al objeto que se observa. Por lógica no podríamos construir ese objeto si lo dibujásemos “tal cual” lo vemos, ya que para ello fuera posible el objeto tendría que mantener su ...

Leer más...

Dibujo Técnico: tipos de línea, grosores y usos

Las líneas en Arquitectura y en Ingeniería Las líneas en arquitectura y en dibujo técnico cumplen un papel fundamental en la representación de nuestro proyecto, pues nos permiten definir las formas y las simbologías precisas para la correcta interpretación y posterior construcción de este. Sin los distintos tipos de línea nuestro dibujo se parecería más a un dibujo artístico y sin los grosores, nuestro dibujo pasaría a ser plano y no sería comprendido en su totalidad por el ejecutante o constructor. Las líneas se clasifican, según la NCh657, en los siguientes tipos y clases: Los tipos de líneas se usan según los ...

Leer más...

Dibujo Técnico: la escala y sus aplicaciones

La escala de los planos Como ya sabemos, si dibujamos un proyecto de arquitectura o un objeto grande es imposible que lo podamos hacer "a tamaño real" pues los formatos de papel son limitados a un ancho máximo de 1,2 mts, y además por razones prácticas (tamaño, peso, transporte y portabilidad) y de lectura es inviable. Plano en tamaño real de Vardehaugen. A pesar de ser un concepto muy interesante y bonito de apreciar, nos muestra el problema de "dibujar" un proyecto en su tamaño verdadero. Si por el contrario dibujamos un objeto muy pequeño en un papel tenemos un problema similar, ya ...

Leer más...

AutoCAD 3D Tutorial 02: Modelado 3D con primitivas (templo griego)

Uno de los principios básicos del modelado 3D es que todos los objetos que existen en la realidad y en la naturaleza nacen a partir de las llamadas "primitivas". Una primitiva se define como la geometría 3D o Poliedros básicos que pueden representarse tridimensionalmente mediante maquetas físicas o virtuales. Una de las características más importantes de estas es que si estas se modifican y/o editan ya sea mediante adición de estas, sustracción u otras acciones, van definiendo formas mucho más complejas. Por esto mismo y al igual que en cualquier otro programa 3D, en AutoCAD existen geometrías 3D llamadas “primitivas básicas” ...

Leer más...

AutoCAD 3D Tutorial 11: Consejos para un buen modelo 3D

En este tutorial se pretende dar consejos para realizar una buena gestión del modelado 3D en AutoCAD sin morir en el intento (o lo que es igual, sin que nuestro computador colapse y/o que nuestro archivo 3D pese demasiados megas). Estos consejos están basados fundamentalmente en mi experiencia como docente y sobre todo como modelador y animador 3D, y la idea es que estos les sean útiles para todos quienes quieran gestionar de forma eficiente sus modelos 3D en AutoCAD, o para quienes están comenzando a realizar sus primeros proyectos. Para el correcto modelado 3D es necesario seguir ciertas pautas o ...

Leer más...

AutoCAD 3D Tutorial 13: UCS, aplicación en modelado 3D

En esta ocasión y dado que hacía mucho tiempo que no se realizaba un tutorial sobre modelado en AutoCAD 3D, hoy nos corresponde mostrar uno de los comandos más eficientes y a la vez de los menos utilizados en el mundo del 3D de AutoCAD: se trata del comando llamado UCS o "User Coordinate System" ya que este es un sistema que nos permite modificar la posición del sistema standard de los ejes coordenados (X,Y,Z), para adaptarlo a cualquier lugar y/o posición para así facilitar el modelado y/o adición o sustraccion de elementos. En esta ocasión modelaremos la estructura en ...

Leer más...

Planimetría 01: Planta de Arquitectura

Definiremos la planta de Arquitectura como un CORTE de tipo HORIZONTAL del edificio o proyecto mediante un plano virtual el cual a su vez remueve la parte superior del edificio. Este corte se realiza usualmente a 1,20 o 1,40 mts y nos sirve para definir la estructura y los espacios principales del proyecto o edificación, en su largo y ancho. La planta es fundamental para comprender un proyecto pues las proporciones y dimensiones de esta son la base para la construcción de este. El concepto queda graficado en el siguiente ejemplo: En el caso de la planta en particular, al estar el plano ...

Leer más...

Planimetría 02: Corte de Arquitectura

Podemos definir un corte de Arquitectura como una sección o "corte" (valga la redundancia) mediante un plano VERTICAL de una edificación, edificio o proyecto de Arquitectura, y nos sirve para definir la relación de escala, proporción, alturas y los elementos estructurales del proyecto frente al contexto. A diferencia de la planta, el corte puede en teoría efectuarse en cualquier parte del proyecto y por ello deberá definirse mediante una señalización de este en la planta y además tener un "sentido", es decir, una dirección hacia donde queremos visualizar los elementos del corte mismo. Este concepto se puede graficar mediante el siguiente ...

Leer más...

Planimetría 03: Elevaciones en Arquitectura

Definiremos como elevaciones a las proyecciones ortogonales bidimensionales de TODAS las caras visibles de un proyecto, vivienda o edificio, utilizando la ya conocida proyección ortogonal de puntos. Estas caras se proyectan en planos imaginarios paralelos a la cara en cuestión y por ello, pueden ser representadas mediante planos bidimensionales. Las elevaciones también se denominan fachadas o alzados. El concepto de las elevaciones puede graficarse en el siguiente esquema: En el esquema notamos que el Norte geográfico está representado en el modelo ya que el nombre de cada cara dependerá de su ubicación geográfica respecto al terreno. El resultado de la proyección de cada ...

Leer más...

Planimetría 04: Representación en planos de muros, puertas y ventanas

En este apunte se muestran las representaciones de los principales objetos en una planta de Arquitectura, en base principalmente a la NCh745 para el caso de las puertas y ventanas. Cabe destacar que estas normas son válidas tanto para el dibujo a mano como mediante software. Representación de muros en planta y corte En el caso de la Arquitectura la representación de muros más utilizada es la línea de contorno sin relleno. Esta debe ir valorizada según la importancia jerárquica o estructural del elemento. Este tipo de representación es válido tanto en planta como en cortes de un proyecto. Los ejemplos de abajo ...

Leer más...

Cortes

Planimetría 04b: Representación en planos de escaleras y rampas

En este apunte se muestran las representaciones de los principales objetos en planos de Arquitectura, en base principalmente a la NCh745 para el caso de escaleras y rampas. Cabe destacar que estas normas son válidas tanto para el dibujo a mano como mediante software CAD.

Representación de escaleras

Las escaleras en general son fáciles de representar en planta ya que nos basta conocer la medida de un “peldaño” para luego definirla de forma completa completa mediante repeticiones de este. Una escalera consta de las siguientes partes:

1- Peldaño, el cual es la estructura o superficie donde una persona puede colocar sus pies y luego ir ascendiendo o descendiendo mediante estos, ya que suelen ubicarse a alturas constantes y controladas. Cada grupo de peldaños que llega a un descanso (o plataforma) se le denomina tramo.

2- Huella, la cual corresponde al espacio o ancho del peldaño donde se coloca el pie. La huella debe tener al menos 20 cms para permitir el pie, aunque lo usual es 25 o 28 cms.

3- Baranda, la cual es un soporte lateral para apoyar los brazos al ir ascendiendo y puede ir en uno o ambos lados de la escalera. Su grosor usual es de 5 a 7 cms.

4- Contrahuella, la cual es la altura de cada peldaño y no se ve en planta sino que sólo de perfil o frente. Esta debe ser de al menos 15 cms y no mayor a 18,5 cms. Medidas mayores dificultarán el ascenso de la persona.

Tipos de escaleras

Las escaleras se definen según su forma y por ello tenemos 5 tipos básicos que son:

Rectas, la más común y más usada en casas y algunos edificios.

En forma de “L”, la más usada en casas y edificios junto con las escaleras rectas.

Soluciones típicas en planta para descansos y/o quiebres, en escaleras en “L”:

De izquierda a derecha: dos peldaños en diagonal, tres peldaños en diagonal y peldaño o plataforma de descanso.

En forma de “U”, la más utilizada en edificios debido a su versatilidad y su relativo ahorro de espacio, y también se usa en algunos tipos de casas. En los edificios este tipo de escaleras suelen tener un peldaño mucho más grande llamado descanso.

Soluciones típicas en planta para descansos y/o quiebres, en escaleras en “U”:

De izquierda a derecha: peldaños diagonales (sin descanso o directa) y con descanso. Por norma el ancho mínimo de un descanso es de 90 cms.

De espiral o de caracol, no muy utilizada ya que es insegura y complicada de utilizar a la hora de trasladar enseres, pero tiene la ventaja de ahorrar espacio ya que no suele tener grandes dimensiones. Este tipo de escalera suele tener un ángulo recto ya que la forma en planta de esta en la mayoría de los casos es de ¾ de círculo. También se dibuja con un pilar al centro (o “center pole”) el cual también es redondo (usualmente de 10 cm de diámetro).

Verticales, las cuales son las más conocidas ya que para ascender por ellas se debe hacer de forma vertical y por ello es que su huella es muy pequeña (menos de 10 cms) y no es muy utilizada como escalera fija en casas o edificios debido a su dificultad de ascenso, pero es la más común a su vez ya que se suelen usar en otras tareas (por ejemplo para subir al techo), y pueden ser de un solo tamaño o plegables. Estas escaleras suelen ser transportables.

Por lógica y utilizando la proyección ortogonal tendremos las siguientes relaciones de las partes de la escalera respecto a la planimetría:

– En planta siempre veremos las medidas reales del ancho de cada peldaño y la huella de cada uno, y de forma proyectada veremos la baranda.

– En frente siempre veremos las medidas reales de la contrahuella y y el ancho de cada peldaño, y de forma proyectada la baranda.

– En corte o perfil siempre veremos las medidas reales de la contrahuella, la huella y la baranda, ya que esta suele ir en diagonal y en el sentido del ascenso.

Normas base para el dibujo de escaleras

Para dibujar las escaleras deberemos tomar en cuenta las siguientes normativas:

– Los dibujos de escaleras en planta deben cortarse a la altura del séptimo peldaño al ir de piso a piso. El resto de la escalera a partir de ese corte se deberá dibujar de forma proyectada (segmentada).

– En la planta el sentido del ascenso debe marcarse con una línea continua tomando como base el punto medio de los peldaños de la escalera. La intersección de esta flecha con el primer peldaño debe marcarse con un punto, un círculo o un par de rayas paralelas.

– Los peldaños deben numerarse indicando el sentido del ascenso. Esto se aplica a todas las vistas de la escalera (planta, frente y perfil). En el caso del frente y perfil, los números van encima de la huella de cada peldaño.

– En la planta, la escalera en el piso final generalmente se ve de forma completa, sin proyecciones de ningún tipo.

Representaciones de escaleras en diferentes vistas

En las siguientes imágenes podemos representaciones típicas y esquemáticas en planta, frente y perfil de los diversos tipos de escaleras, además de la normativa básica aplicada en ellas:

Normativa y representación en planta, corte y frente de una escalera recta.

Normativa y representación en planta, perfil y frente de una escalera en “L”.

Normativa y representación en planta, perfil y frente de una escalera en “U”, con descanso.

Normativa y representación en planta, perfil y frente de una escalera en “U”, sin descanso (directa).

Normativa y representación en planta y perfil de una escalera en espiral o caracol.

Representación de rampas

Las rampas siguen normas similares a las escaleras pero con la diferencia que estas NO tienen peldaños sino que son una sola superficie donde el ascenso es continuo. Debido a que las rampas no tienen peldaños, la altura salvada por cada tramo será mucho más baja en comparación a una escalera y por ende el tramo deberá ser mucho más largo respecto a esta. Sin embargo, las rampas son de mucha utilidad ya que permiten el ascenso de personas discapacitadas ya que les sería muy difícil el hacerlo por las escaleras.

Los tipos principales de rampas que encontramos en Arquitectura son:

Rampas Rectas, las cuales son las más utilizadas (sobre todo en estaciones o paradas).

Rampas en forma de “L”, utilizadas en edificios. Por lógica, en la esquina deberá tener un descanso plano antes del siguiente tramo.

Rampas en forma de “U”, utilizadas en edificios. Por lógica, en la esquina deberá tener un descanso plano antes del siguiente tramo.

Debido a las limitaciones de la rampa y el uso, estas deberán tener una pendiente máxima que facilite el ascenso de la persona (usualmente es un 12% o menos, dependiendo de la longitud del tramo).

Pendiente de una rampa

La pendiente se define como el grado o ángulo de inclinación de la rampa respecto a la horizontal la cual es expresada en porcentaje, y dependerá del largo de la rampa y de la altura a la que asciende el tramo. Por ello podemos determinar la pendiente de la siguiente forma:

Porcentaje de pendiente = largo de la rampa / altura.

Por ejemplo, si un tramo de rampa mide 6 mts de largo y asciende 0.6 mts, su pendiente se calcula de la siguiente manera:

6 / 0.6 = 10 => 10% de pendiente.

Esto se puede graficar en el siguiente esquema:

Por lo tanto podemos inferir que:

100% de pendiente => el largo de la rampa coincide con la altura, el ángulo de inclinación de la rampa es de 45°.
50% de pendiente => la altura es la mitad del largo de la rampa, el ángulo de inclinación de la rampa es de 27°.

Normativas para dibujo de rampas

– El sentido del ascenso de la rampa debe marcarse con una línea continua y con flecha, de forma similar a la escalera.

– Como en las rampas no hay peldaños, las cotas de altura de la rampa deben marcarse en la planta y en el corte, además en este último debe ir expresado el porcentaje de pendiente (inclinación) de la rampa.

Bibliografía utilizada:

– Instituto Nacional de Normalización, http://www.inn.cl.
– Norma Chilena NCh745, representación de materiales y elementos en planta.
– International Organization for Standarization, ISO: http://www.iso.org.
Cómo interpretar un plano, Juan de Cusa, Monografías CEAC construcción.

 

Dibujo Técnico: convenciones sobre el dibujo de Arquitectura

Acerca del dibujo arquitectónico

Como ya sabemos, la expresión gráfica que se utiliza en la Arquitectura está definida por un conjunto de especificaciones y normas y a la vez estas son parte de lo que conocemos como dibujo técnico.

El ojo humano está diseñado para ver en 3 dimensiones: largo, alto y ancho. Sin embargo, estas sufren distorsión dependiendo de la distancia y la posición donde esté situada la persona respecto al objeto que se observa. Por lógica no podríamos construir ese objeto si lo dibujásemos “tal cual” lo vemos, ya que para ello fuera posible el objeto tendría que mantener su verdadera magnitud y forma y esto no es posible en este tipo de proyección. Este sistema de proyección se conoce como proyección cónica, debido a que el ojo enfoca los objetos desde un punto de observación y los envuelve mediante un cono virtual. Si bien su desventaja principal es que no podremos construir el objeto visto, en muchas ocasiones nos bastará un solo dibujo para que podamos entender el objeto en su totalidad ya que este nos mostrará la forma “tridimensional” de este.

dibujo_arq01

Proyección de tipo cónica o real del ojo humano

Por esto mismo es que en dibujo arquitectónico una de sus convenciones o normas principales es que la proyección de los objetos debe mostrar su tamaño y forma verdaderos para así poder ser medidos y luego construidos. Por esto mismo es que gracias a la geometría descriptiva se ha logrado establecer un sistema de proyección que consiste en que frente al observador se ubica en un plano imaginario donde su campo de visión es perpendicular al objeto observado. Este tipo de proyección se conoce como proyección ortogonal.

dibujo_arq02

Proyección del plano perpendicular u ortogonal.

La ventaja de este sistema es que el objeto no se distorsiona respecto a la posición del observador ya que siempre será un plano paralelo a la cara que se proyecta, además que por supuesto los objetos mantienen su verdadera magnitud y forma lo cual permitirá que sea construido. Sin embargo, la principal desventaja de esta proyección es que el objeto no puede ser interpretado de forma íntegra con un solo dibujo, ya que se requieren de varias “vistas” para comprender el objeto en su totalidad. A partir de este tipo de proyección nace el concepto de “plano” de arquitectura.

Tipos de Planos básicos en Arquitectura

A partir de lo anterior, podemos deducir fácilmente que para la construcción de un proyecto de Arquitectura, ya sea vivienda, edificio o remodelación, primeramente debemos realizar muchos dibujos o “vistas” ya que como sabemos, debemos mostrar la mayor información posible al constructor o ejecutor de este. En arquitectura tenemos los siguientes tipos de planos:

a) Planta: una “planta” se define como una representación bidimensional que nos muestra el tamaño de los espacios internos y la estructura de un proyecto, además del entorno que lo circunda.  En realidad la planta es un corte que se realiza mediante un plano imaginario horizontal, el cual está a 1,00 o 1,20 mts. de la línea del terreno. En este corte podremos ver el largo, ancho y el espesor de los elementos que lo componen, particularmente la estructura.

dibujo_arq04

Esquema del concepto planta

dibujo_arq04b

Planta desarrollada a mano, a partir del concepto anterior.

Por normativa las líneas correspondientes a la estructura de la planta siempre deben ir más gruesas, para indicar cercanía al observador.

b) Cortes: una corte se define como una representación bidimensional que nos muestra la estructura, dimensiones y alturas principales del interior de una edificación. Un corte se realiza mediante un plano imaginario vertical, el cual traspasa en su totalidad el proyecto y su entorno o terreno. En este corte podremos ver el largo (o ancho, según dónde pase el corte), alturas y el espesor de los elementos que lo componen.

dibujo_arq04c

Esquema del concepto corte.

Las líneas que representan elementos estructurales “cortados” como vigas, losas y fundaciones deben ser gruesas para indicar cercanía. Los cortes pueden ser longitudinales (si pasan por el lado más largo de la edificación) o transversales.

dibujo_arq04d

Por normativa, las líneas y los sentidos de los cortes deben ser indicados en la planta.

c) Elevaciones: una elevación se define como una representación bidimensional que nos muestra la forma, materialidad y las dimensiones principales de una “fachada” o cara de una edificación. La elevación se realiza mediante un plano imaginario vertical, el cual está a una distancia determinada y por lo general es paralela a la cara que representa. En esta podremos ver el largo, ancho y las alturas de los elementos que la componen.

dibujo_arq05

Esquema del concepto elevación.

dibujo_arq05b

Elevaciones o caras resultantes del ejemplo de arriba.

Los elementos que están más cercanos al espectador deben ir más gruesas, para indicar cercanía a este. También se suele dibujar la materialidad de cada cara.

dibujo_arq05c

La elevación proyectada en el plano horizontal genera la llamada “planta de techumbre” o también denominada “quinta Fachada”.

d) Detalles constructivos: son fundamentales en el proyecto ya que nos determina la calidad y las características de ciertos elementos en un edificio, los cuales con componentes unificados que forman un todo. Los detalles constructivos componen más del 90% del proyecto ya que con ellos se les guía a los ingenieros, arquitectos, proyectistas, constructores y a otros participantes del proceso de construcción.

dibujo_arq03

Detalle constructivo de una fundación, mostrando el sistema constructivo e indicaciones de material.

Uno de los detalles más utilizados en arquitectura es el denominado Corte Escantillón, el cual es usado para determinar la materialidad, las dimensiones y la estructura de un “muro tipo” que se utilizará en el proyecto. En este corte podemos definir detalles como el tipo de fundación, tipo de cielo, composición de los pisos, forma del alfeizar de la ventana, estructura de la techumbre entre otros. Este corte debe contener todos los elementos del muro, desde la fundación hasta el sistema de techumbre. En este tipo de cortes se suele indicar el material, tanto su nombre como detalles anexos como por ejemplo el espesor o el tipo a utilizar.

dibujo_arq03a

Corte escantillón de un recinto que nos muestra los detalles de su materialidad, sistema constructivo e indicaciones. Tomada de la web http://www.catalogoarquitectura.cl.

dibujo_arq03b dibujo_arq03b2

Ejemplo concreto de un corte escantillón, que nos muestra su corte original 2D y luego su contraparte real, en obra. Imagen tomada de la web: http://www.monografias.com.

Composición de un dibujo a mano alzada

Si bien los planos suelen dibujarse mediante instrumentos de dibujo o de forma digital mediante software como AutoCAD, los arquitectos y constructores también suelen trazarlos a mano alzada ya que la idea de estos dibujos es expresar las primeras ideas y conceptos que se tienen respecto al diseño, crear el prototipo para el levantamiento o para pasos constructivos previos. Para trazar viviendas a mano alzada debemos seguir una serie de pasos que son los siguientes:

– Definimos los trazos base o líneas principales de nuestro dibujo, usando un lápiz fino. Definiremos dimensiones principales y alturas, proporcionándolos mediante el método del lápiz.

dibujo_arq06a

– Detallamos con el mismo lápiz los detalles principales del dibujo en base a las líneas realizadas anteriormente.

dibujo_arq06b

– Definimos el dibujo repasando los detalles con lápices más gruesos. En este caso debemos tomar en cuenta que los volúmenes cercanos al espectador deben ir en lápiz grueso, mientras que los elementos lejanos irán con lápiz delgado.

dibujo_arq06c

Para un trazado correcto y proporcional de nuestro dibujo a mano alzada utilizaremos el método más popular de medida, también llamado método del lápiz. Este consta de los siguientes pasos:

dibujo_arq07

– Levantando y extendiendo el brazo y el lápiz a la altura de los ojos, lo situamos sobre la parte del modelo que deseamos medir.

– Luego desplazamos el dedo pulgar de modo que la parte visible del lápiz coincida con nuestra medida.

– Finalmente trasladamos esa medida dada por el lápiz a nuestro dibujo.

Para que el resultado sea óptimo debemos estar siempre en la misma posición, ya que el alterar esta modificará irremediablemente la proporción asignada.

Planimetría 07: Definir escaleras en corte a partir de su planta

En este apunte de planimetría se explicará la manera más simple de obtener el perfil o el corte de una escalera a partir de su planta dibujada. Para ello utilizaremos el método de proyección de vistas como técnica y esta es válida tanto si dibujamos a mano como por software 2D.

Los pasos a seguir son los siguientes:

1) Dibujada la escalera en planta, definiremos una línea paralela a esta a una distancia mayor que la altura total de la escalera.

escalera001

2) Proyectamos líneas perpendiculares tomando como puntos el ancho de cada peldaño.

escalera002

3) Ahora proyectamos líneas horizontales tomando como referencia la altura de la contrahuella (la altura de esta varía entre 15 y 20 cms), realizando en total la cantidad de peldaños mas uno (en el ejemplo son 13) ya que incluimos el total de peldaños más la línea que corresponde al terreno.

escalera003

4) Ahora proyectamos líneas horizontales hacia abajo tomando como referencia la altura de la contrahuella para definir la altura de cada peldaño. En este caso realizaremos en el total de peldaños, partiendo desde el más alto.

escalera004

5) Recortamos mediante trim (AutoCAD) las líneas sobrantes para definir los peldaños de la escalera. Es recomendable partir por el peldaño más alto.

escalera005

6) Seguimos borrando la escalera para terminar de definirla. Podemos dibujar el soporte de esta basándonos en la distancia horizontal del primer peldaño (A). Copiamos la altura de la contrahuella en la parte superior B) y dibujamos una línea entre estos (C).

escalera006

7) Valorizamos los peldaños y de esta forma obtenemos la escalera en corte.

escalera007

8) Añadiremos detalles extras a la escalera como barandas, soportes y nomenclatura para finalizar el trabajo.

escalera008

Seguiremos con el resto de las escaleras de la misma forma. Con este método tendremos de forma fácil y rápida las escaleras base para nuestro proyecto.

Planimetría 06: Definir cortes a partir de la planta

En este apunte de planimetría se explicará la manera más simple de obtener los cortes de un proyecto determinado a partir de su planta dibujada. Para ello utilizaremos el método de proyección de vistas como técnica y esta es válida tanto si dibujamos a mano como por software 2D.

Los pasos a seguir son los siguientes:

1) Teniendo definida la planta de nuestro proyecto:

elev000

2) El corte se definirá de forma similar a la elevación. Eso sí, se recomienda antes hacer una copia de la planta y borrar lo que “no se verá” en el corte. A continuación proyectamos las líneas principales tomando incluso las de las ventanas que se cortan.

corte001

3) Definimos una línea horizontal perpendicular a las proyecciones y en base a esta definiremos la altura principal del piso del corte (si son dos o más lo recomendable es que se marquen piso a piso).

corte002

4) Ahora definimos las alturas de vanos y alfeizar de ventanas. Usaremos offset (AutoCAD) para esto según la altura medida o especificada.

corte003

5) Definimos ahora la pendiente de la techumbre y las alturas de esta, en base a lo especificado o medido en este.

corte004

6) Ahora definimos la o las losas según corresponda, tomando como referencia como referencia lo que se ve en el corte. Las alturas de las losas suelen ser de: 10, 12 o 15 cm.

corte005

7) recortamos las líneas sobrantes para definir el corte teniendo como referencia los elementos que se cortan en este.

corte006

8) borramos las líneas de proyección y valorizamos para terminar el trabajo.

corte007

Seguiremos con el resto de los cortes de la misma forma. Con este método tendremos de forma fácil y rápida los cortes base para nuestro proyecto. Agregaremos detalles extras como materiales, contexto, árboles, gente, normativa, etc. para finalizar el trabajo.

Planimetría 02: Corte de Arquitectura

Podemos definir un corte de Arquitectura como una sección o “corte” (valga la redundancia) mediante un plano VERTICAL de una edificación, edificio o proyecto de Arquitectura, y nos sirve para definir la relación de escala, proporción, alturas y los elementos estructurales del proyecto frente al contexto. A diferencia de la planta, el corte puede en teoría efectuarse en cualquier parte del proyecto y por ello deberá definirse mediante una señalización de este en la planta y además tener un “sentido”, es decir, una dirección hacia donde queremos visualizar los elementos del corte mismo.

Este concepto se puede graficar mediante el siguiente esquema:

En este caso la parte derecha de la edificación se ha “removido” y por ello el “sentido” o lectura del corte es hacia la izquierda del proyecto. Uno de los aspectos más importantes del concepto de corte es que a partir de este plano vertical, podremos proyectar la resultante mediante un “plano” 2D del corte, mediante el ya clásico método de proyección ortogonal aplicado a ese mismo plano:

Resultante de la proyección del corte aplicado en el plano vertical mismo.

Resultante de la proyección del corte, en un plano 2D.

Notamos que los elementos que se cortan primero van en línea gruesa para indicar cercanía y dar fuerza al corte mismo, y el resto de los elementos van en una línea más delgada ya que están más lejos.

Normas generales para los cortes

Como primera norma general para el corte y a diferencia de las plantas, este se debe dibujar en TODO el proyecto ya que este afecta a TODA la estructura al mismo tiempo, por ende NUNCA debe ser separado por pisos.

Como segunda norma general, un corte puede ser de dos tipos básicos:

Longitudinal. Es decir, a lo largo del proyecto.
Transversal. Es decir, a lo ancho del proyecto.

Podemos realizar tantos cortes como queramos aunque el mínimo exigido es dos para el caso de proyectos menores como viviendas (uno longitudinal y uno transversal), y “los suficientes para entender el proyecto” para el caso de edificaciones de mayor complejidad como edificios o similares.

Y como tercera norma general, siempre deberemos señalizar en la o las plantas el lugar por donde “pasa” o se proyecta nuestro corte.

En el siguiente proyecto de ejemplo podemos ver la aplicación de estas normas base:

Proyecto original previo.

Corte longitudinal del proyecto.

Corte transversal del proyecto.

Señalización de los cortes del proyecto de ejemplo en las plantas de ambos pisos.

En el ejemplo notamos que los cortes se señalizan en las plantas mediante líneas de centro, y con dos líneas continuas y gruesas en cada extremo (también pueden ser flechas). Estas últimas determinan el “sentido” y por ende indican lo que se verá en ese corte específico. También notamos que se utilizan las letras del alfabeto como elemento inicial y final de cada corte. Por ende, el primer corte se denominará Corte A-A’ (o A-A), el segundo será el Corte B-B’ (o B-B) y así sucesivamente según la cantidad de cortes realizados.

Si bien podemos definir un corte mediante la expresión A-A, se recomienda hacerlo mediante la aplicación de la prima (‘) en la segunda letra, de tal modo que nos quede la expresión A-A’ ya que se entiende mejor la trayectoria de este ya que el corte “parte desde A y llega hasta A'” lo que evita confusiones al dibujarlo, ya que por norma el corte se dibuja según la trayectoria en que este vaya.

Dependiendo del cómo el plano de corte atraviesa al interior del proyecto, el corte puede ser de dos tipos:

1- Directo (corte A-A’ del ejemplo) o sea, un plano que corta a lo largo o ancho de la planta.
2- Escalonado o por planos paralelos (corte B-B’ del ejemplo), o sea planos en paralelo que cortan la planta de forma escalonada (largo-ancho-largo o viceversa). En este caso puntual, siempre se debe hacer mediante planos perpendiculares.

Si bien ambas formas para realizar un corte son válidas, el corte resultante por definición es “imaginario” ya que si bien las medidas de este son las reales, no se debe dibujar el “quiebre” en el caso del corte escalonado.

Dibujo base de un corte

En los cortes siempre debemos dibujar o “cortar” lo siguiente:

a) Todos los elementos estructurales del proyecto por donde pase el corte: elementos horizontales como las losas y las vigas, y verticales como cimiento, sobrecimiento y muros, tanto si son simples como compuestos.

b) Los elementos de la estructura de la techumbre, si están cortados. Los elementos visibles de fondo también deben ser dibujados.

c) Mobiliarios fijos, como por ejemplo muebles de cocina o la tina del baño (sólo si es que el corte pasa por ellos).

d) El terreno, ya que por definición los cortes no están gravitando en el espacio. Este puede ser representado mediante una línea gruesa o también una combinación entre esta más un achurado, tal como se aprecia en la imagen de abajo:

Dependiendo de la escala a utilizar en el corte mostraremos mayor o menor detalle, sobre todo en el caso que dibujamos la estructura de cubiertas o las puertas y ventanas. Hay que dejar en claro que en un corte de Arquitectura no nos interesa mostrar materiales específicos y por ende, unificaremos todos los elementos constructivos como muros, cimientos, losas y otros. La techumbre, en cambio, será independiente del corte aunque esto también dependerá de la estructuración del proyecto.

Como por definición el corte es “vertical”, en este aparecerán elementos que en planta no se aprecian como por ejemplo, los grosores de losas y radieres además de la cimentación del proyecto y el sobrecimiento.

En las imágenes siguientes vemos la representación 3D y los planos de corte 2D de los cortes A-A’ y B-B’ del proyecto de ejemplo.

Representación tridimensional del corte A-A’ del proyecto de ejemplo.

Representación bidimensional (plano 2D) del corte A-A’ del proyecto de ejemplo.

Representación tridimensional del corte B-B’ del proyecto de ejemplo.

Representación bidimensional (plano 2D) del corte B-B’ del proyecto de ejemplo. Nótese que no se ha dibujado el “quiebre” del corte real y el techo junto con las losas se representan continuos, ya que el corte por definición es imaginario.

Como se aprecia en el proyecto de ejemplo, el corte debe mostrar de la mejor manera posible las relaciones espaciales entre los recintos además de su estructura y los elementos de techo. Por ello, al realizar el corte es importante pensar en la mayor cantidad de recintos que debemos mostrar mostrar y en lo posible que este pase por una puerta, una escalera y/o una ventana, para poder apreciarla en el corte mismo. Por ejemplo, un corte a través de un pasillo no es muy recomendable pues solamente veríamos puertas y muros así como también un corte que no muestre ventanas o puertas cortadas, ya que con esto se perdería la relación del proyecto con el entorno.

Otro aspecto muy importante a recalcar que en proyectos donde haya estructura de pilares, NUNCA se deben seccionar estos ya que darían la impresión de ser muros. Se deben dibujar como líneas verticales más delgadas detrás del corte de losas. En los ejemplos de abajo esto queda más claro:

Corte de estructura de pilares incorrecto, puesto que estos se ven como muros en corte.

Corte de estructura de pilares correcto, puesto que estos se ven de fondo y la losa se ve cortada.

Estructura de techumbres en el corte

En cuanto al dibujo en corte de la estructura de la techumbre nos aparecerán las cerchas y otros elementos de la techumbre, y su modo de visualización dependerá de la posición de estos y del tipo de corte realizado. En este último caso, las cerchas podrán verse de frente o de lado según la posición de estas en el proyecto, junto con el corte de la cubierta respectiva o de las costaneras, dependiendo de la escala de trabajo y el nivel de detalle.

Esquema de un corte transversal de techo donde vemos una cercha de frente, y la cubierta superior cortada.

Esquema de un corte longitudinal del mismo techo anterior donde esta vez vemos la secuencia de cerchas de perfil o “lado”, y la cubierta superior cortada. Notamos también que las cerchas se apoyan en los extremos ya que de hacerlo en los extremos del techo, estas se caerían al carecer de apoyos.

Es importante notar que en el dibujo de una techumbre en corte, por estética y funcionalidad es mucho mejor dibujar el corte “completo” de la estructura en lugar del corte “real” de esta, tal como se aprecia en el ejemplo de abajo:

En el ejemplo, el corte real no considera la altura completa de la techumbre ya que este toma en cuenta el lugar preciso por donde pasa nuestro corte que por supuesto no es la mitad, y por ello se ve parte de la techumbre exterior. En la segunda imagen, se toma en cuenta altura total del techo aunque sabemos que el corte no pasa por la mitad del proyecto, y por lo tanto es el más recomendado para representar la estructura.

Puertas y ventanas en corte

Si queremos dibujar las puertas y ventanas en un corte estas no son difíciles de realizar, ya que las ventanas se dibujan de forma muy similar a la planta puesto que estas siguen una estructura parecida a como se ven en la planta, a excepción del caso de una ventana corredera en la cual una es cortada y la otra no. Otra excepción a esta regla es cuando las dibujamos en escalas mayores ya que en este último caso, se deberán detallar los detalles de los rieles o perfiles los cuales difieren de lo visto en la planta. En cuanto a las puertas, estas se deben cortar y por ello deberán mostrarse cerradas.

Estos criterios quedan más claros en los siguientes esquemas:

Esquema y vista de la puerta en corte.

Esquema para definir la vista de la ventana en corte.

Vistas de las ventanas tipo y de los ventanales en corte.

Valorizaciones en un corte

Al igual que en el caso de la planta de Arquitectura, en un corte se deben valorizar los elementos cercanos y lejanos mediante líneas gruesas y delgadas, donde la estructura (muros, machones, losas, etc.) siempre será más jerárquica y además se usarán distintos grosores según los elementos que sean visibles en el dibujo. Usualmente la jerarquía (ordenada desde lo más grueso a lo más delgado) es la siguiente:

a) Estructura: cimientos y sobrecimientos, muros, losas, vigas, machones, etc.
b) Pilares, si los hay.
c) Tabiques o muros no estructurales.
d) Puertas y Ventanas.
e) Mobiliario.
f) Elementos visibles en el fondo o revestimientos en habitaciones, como por ejemplo la cerámica de los baños.

En las imágenes siguientes vemos la aplicación de estos criterios, tomando como referencia el corte A-A’ del proyecto de ejemplo:

Corte A-A’ sin valorización. 

Corte A-A’ con valorización aplicada.

Normas de información para los cortes

Los cortes se pueden dibujar en una sola lámina y deben ser ordenados de forma alineada de izquierda a derecha o de arriba hacia abajo, de manera similar al dibujo de plantas.

La información base que debemos colocar en los cortes es:

a) El respectivo nombre de este (A-A’, B-B’, etc.) además de la escala de trabajo, esta última en una letra de tamaño más pequeño.

b) Los ejes, los cuales deben ser correspondientes con los de las plantas y sólo en los muros, NUNCA en las losas.

c) Cotas base para cada corte, preferentemente en la parte de abajo de los ejes. En este caso podremos acotar los ejes, dimensión general, divisiones principales y anchos de cimientos según sea el caso.

d) Cotas de nivel (altura) que precisen tanto el Nivel del Terreno Natural o NTN (siempre con el valor de ±0.00) como las alturas de piso terminado (APT) y los NPT (Nivel de Piso Terminado). También debemos destacar alturas importantes como alturas de techos, las cuales se designarán con el signo positivo (o negativo si estas están debajo de la cota ±0.00) más el valor de la altura. En este caso no se acotará mediante cotas normales sino que se realizará mediante cotas especiales que indican el nivel respectivo mediante una flecha. En el ejemplo de abajo se puede apreciar la aplicación de este tipo de cota.

e) Si tenemos escaleras dibujadas en nuestro corte y son visibles y/o están cortadas, dibujaremos las proyecciones de esta y además numeraremos los peldaños de estas de forma similar a las plantas.

f) Nombre de cada recinto visto en el corte.

En las imágenes siguientes vemos la aplicación de estas normativas de información en el proyecto de ejemplo:

Corte A-A’ del proyecto de ejemplo, con la información base aplicada.

Corte B-B’ del proyecto de ejemplo, con la información base aplicada.

Normas específicas de dibujo para los cortes

Otra información adicional que debemos dibujar en un corte de Arquitectura es lo siguiente:

a) El mobiliario dentro del proyecto que sea visible en el corte ya que esto nos dará una idea de la escala del proyecto y de la funcionalidad de cada recinto cortado. Es importante afirmar también que el mobiliario NUNCA debe ser cortado sino que SIEMPRE se verá de frente o de perfil, según sea la orientación en que realicemos el corte. Por normativa y razones obvias el único artefacto que puede ser “cortado” es la tina del baño y/o el receptáculo de ducha ya que están siempre están fijos, al igual que los muebles fijos de cocina. Para el caso del WC y lavatorio, en el dibujo de arquitectura NUNCA deben cortarse sino que basta con dibujarse de frente o perfil.

Los perfiles de los muebles pueden deducirse fácilmente usando la proyección ortogonal ya vista en el tutorial sobre métodos de proyección:

Obtención de una mesa con sillas de frente y de perfil a través de una vista en planta de estos, utilizando proyección ortogonal.

b) Personas, para dar la idea de la escala y el emplazamiento del proyecto.

En las imágenes de abajo vemos el proyecto de ejemplo del principio y esta vez se le han realizado 4 cortes para mostrarlo, además vemos sus representaciones en 3D y aplicaciones de todo lo tratado en este apunte en los planos finales de cada corte.

Plantas finales del proyecto de ejemplo, junto con la indicación de los cortes A-A’, B-B’, C-C’ y D-D’.

Representación 3D y plano 2D del corte A-A’ del proyecto, con normativas finales aplicadas.

Representación 3D y plano 2D del corte B-B’ del proyecto, con normativas finales aplicadas.

Representación 3D y plano 2D del corte C-C’ del proyecto, con normativas finales aplicadas. En este caso puntual tenemos un medio corte o también llamado “corte-elevación”, ya que parte de esta última es visible en el plano.

Representación 3D y plano 2D del corte D-D’ del proyecto, con normativas finales aplicadas.

Ahora bien, si estamos dibujando cortes de un proyecto que será revisado por otras entidades (como por ejemplo las municipalidades), debemos agregar a los cortes lo siguiente:

a) Muros medianeros, perfil de vereda y de calle.

b) Elementos como mobiliario urbano, elementos arbóreos, vehículos y gente, para dar la idea de la escala y el emplazamiento del proyecto.

c) Elementos normativos como ejes medianeros, rasantes y otros según se especifique.

En las imágenes de abajo vemos un ejemplo de estas normativas específicas aplicadas en el corte A-A de nuestro proyecto de ejemplo:

Plano de ubicación del proyecto de ejemplo, con el corte A-A’ señalizado.

Representación 3D del corte A-A’ junto a su contexto.

Plano del corte A-A’ con el contexto y normativas municipales o de terreno incorporadas.

Otros tipos de cortes

Además del corte de Arquitectura propiamente tal, también existen otros cortes especiales que son:

1) De Escantillón, el cual es un corte que nos permite apreciar los sistemas, soluciones y las relaciones constructivas de los materiales y elementos en una o más fachadas del proyecto. Este corte es parte de los planos de detalles constructivos de un proyecto y se suele dibujar en escalas mayores como 1:20, 1:10 o 1:5 y por ende, se debe mostrar el mayor detalle posible además de la diferenciación de los materiales. En este corte deben especificarse los materiales a utilizar así como las dimensiones base de cada uno u otros datos técnicos.

Un corte escantillón no sólo se aplica a una fachada específica sino que incluso puede realizarse en todo el proyecto, tal como se aprecia en el ejemplo de abajo:

Este tipo de corte se debe indicar en la planta y usualmente en lugar de letras se utilizan números consecutivos como 1-1 (o 1-1’), 2-2 (o 2-2’), etc. El corte escantillón frecuentemente es un plano 2D pero también puede ser fugado o incluso en 3D, como se ve en la imagen de abajo:

Ejemplo de detalle escantillón en 3D.

2) Fugado o Perspectivado, el cual se ejecuta en perspectiva cónica y por ello nos permite ver los espacios interiores principales del proyecto además del corte mismo. Se suelen realizar a mano o en programas 3D especiales para ello.

3) En 3D, el cual es una variante del anterior que permite ver la perspectiva cónica, los espacios interiores del proyecto y a su vez los materiales y/o texturas aplicados a este, además de elementos complementarios al proyecto como iluminación, mobiliarios y revestimientos. Se suelen realizar en programas 3D especiales para ello.

AutoCAD 3D Tutorial 07: Planos de corte y sección

Plano de corteAsí como podemos manejar operaciones de sólidos y editar los diversos elementos 3D, AutoCAD también nos ofrece un comando muy interesante que nos permitirá seccionar nuestros elementos 3D como si fuese un corte 2D, además de poder representarlo en el espacio. También podremos realizar un corte 3D de nuestro proyecto ya que además de realizar cortes 2D, el comando puede crear una copia del proyecto 3D ya cortado.

Plano de corte (Section Plane)

Este plano permite cortar el sólido mediante el comando llamado sectionplane. Si lo definimos en un punto cualquiera del sólido y luego lo movemos (o rotamos) para traslaparlo podremos ver el corte de una figura 3D:

section_planesection_plane_addjog

En este ejemplo, antes de la aplicación de section plane se ha realizado una sustracción previa de una caja más pequeña definida previamente mediante el comando Shell.

Si vemos la barra de comandos encontraremos las siguientes opciones:

section_plane_options

Opciones de Section plane (ACAD 2013)

Opciones de Section plane (ACAD 2015-17)

Donde encontramos lo siguiente:

Draw Section (D): esta opción nos permite dibujar la sección de corte del sólido mediante dos o más puntos y además tendremos la ventaja de poder seleccionar hacia dónde se verá el corte. Lo primero que haremos será seleccionar la opción (mediante un click o escribiendo D en la barra de comandos y luego presionando enter), elegimos los puntos que irán dando forma a nuestro corte y luego presionamos enter para finalizar el trazado. Finalmente y de forma similar a offset elegiremos el lado donde será NO visible el corte mediante un click en uno de los sectores de la forma 3D (delante o detrás de ella). Si no realiza el corte de forma automática, podremos apreciar el resultado del corte debemos escribir livesection, presionar enter y luego elegir mediante un click el plano del corte ya realizado.

Ejemplo de modelo 3D con un corte realizado utilizando la opción draw section.

Orthographic (O): esta opción nos permite definir el corte mediante un plano el cual se proyectará de forma ortogonal según la cara del sólido que elijamos y lo cortará desde el centro de gravedad de este. Si al elegir esta opción vemos la barra de comandos, podremos elegir las 6 diferentes vistas:

section_plane_options_ortho

Estas vistas son las siguientes:

Top (T): proyecta el plano en la vista Top o planta (de arriba hacia abajo).

Front (F): proyecta el plano en la vista Front o frente.

Back (A): proyecta el plano en la vista Back o trasera.

Bottom (B): proyecta el plano en la vista Bottom o abajo (de abajo hacia arriba).

Left (L): proyecta el plano en la vista Left o izquierda.

Right (R): proyecta el plano en la vista Right o derecha.

EL corte se activará al elegir cualquiera de las opciones anteriores, y este plano podrá ser editado sin mayor problema (incluso se le pueden agregar secciones o Jogs).

Type (T), ACAD 2015 en adelante: esta opción nos permite definir el tipo de corte que se representará en la Viewport. Si al elegir esta opción vemos la barra de comandos tenemos las diferentes opciones disponibles:

Estas son las siguientes:

Plane: El plano de corte por defecto.

Slice: Sólo funciona con cortes rectos (sin Jogs) y nos permite delimitar el tamaño o campo que abarcará el corte según queramos. Podemos definir este moviendo la flecha triangular respectiva.

Corte con Slice aplicado, sin modificar (por defecto).

El mismo ejemplo anterior pero modificado (ensanchado).

Boundary: Nos muestra el área que abarca el corte. Puede ajustarse moviendo las flechas triangulares respectivas.

Volume: Nos muestra el volumen del corte. Puede ajustarse moviendo las flechas triangulares respectivas.

Live Section (activar o desactivar cortes en la viewport)

livesection

El comando Live Section nos permitirá activar o desactivar la opción de corte. Para ejecutarlo escribimos livesection, presionamos enter y luego elegiremos mediante un click el plano del corte para activar o desactivar la opción de corte.

Livesection desactivado (OFF).

Livesection activado (ON).

Es importante destacar que en el modelo 3D el plano de corte siempre será visible, haya sido activado o no la opción live section.

Add jog (agregar desplazamiento)

addjog

El comando Add Jog es una muy buena opción ya que nos permitirá agregar un desplazamiento o “quiebre” al corte. Para ejecutarlo escribimos sectionplanejog, presionamos enter y luego elegiremos mediante un click el plano del corte. Ahora elegimos un punto cualquiera de la línea cental del plano desde donde se iniciará el desplazamiento (podemos ayudarnos con nearest) y finalmente clickeamos para finalizar el comando y ver el resultado:

Ejemplo de modelo 3D con Addjog agregado.

Lo mejor de section plane además del simple hecho de cortar toda la forma 3D es sin duda el que podemos editar todas las líneas de corte simplemente moviendo las flechas azules y automáticamente se modificará el corte 3D, al igual que podremos modificar (mover) los puntos azules para cambiar el ángulo de las secciones. Los elementos de los que disponemos para la edición son los siguientes:

Cuadrados laterales: nos permiten mover o manipular los planos de corte para definir cortes en diagonal, y se encuentran en los extremos de cada plano de corte.

Corte en diagonal tomando un cuadro lateral.

flecha triangular: nos permiten mover o manipular los planos de corte en forma perpendicular (respecto a los planos X o Y), y se encuentran en la mitad de cada plano de corte. Si estas se encuentran arriba o abajo del plano, nos definirán la “altura” de este.

Corte modificado en su largo/ancho tomando una flecha triangular.

Corte modificado tomando una flecha triangular, pero esta vez redefiniendo la altura del plano.

flecha de sentido: al presionarla podremos cambiar el sentido del corte completo. Esta flecha aparece en una posición específica de todo el corte, normalmente en el lado derecho.

Sentido completo del corte modificado presionando una flecha de sentido.

flecha de Type: al presionarla podremos elegir el tipo de representación que queremos ver en la Viewport del corte y que ya vimos en la opción Type: Plane (plano), Slice (corte), Boundary (área) y Volume (volumen).

Una de las cosas importantes a mencionar en el caso de Section plane es que a pesar que el plano de corte es limitado en medidas, el corte realizado por este afectará por igual a todos los elementos 3D lo que se modelen entre este plano y el corte original ya que este se proyectará hacia el infinito.

En el ejemplo se dibuja una caja que atraviesa el plano de corte. En la segunda imagen notamos que la caja es afectada por el corte a pesar que el plano no la toca.

Ahora bien, si el elemento 3D se dibuja dentro del área donde se realiza el corte, este “desaparecerá” hasta que desactivemos livesection lo cual hará visible todo el modelo 3D y el elemento desaparecido.

En el ejemplo se dibuja una caja dentro de la zona de corte y en la segunda imagen esta desaparece. En la tercera imagen notamos que la caja vuelve a aparecer al apagar livesection.

Generate Section (generar sección)

generatesection

Este comando es muy interesante pues nos permitirá convertir nuestros cortes a representaciones 2D y 3D respectivamente. Para definirlo debemos seleccionar el ícono respectivo o en la barra de comandos escribimos sectionplanetoblock, si lo hacemos correctamente nos aparece el cuadro siguiente:

section_plane_generate_section_options

Presionaremos el ícono de Select section plane y luego clickearemos en el plano de corte para definirlo. Volveremos al cuadro y en este podremos elegir si queremos una representación 2D o 3D y además podremos aumentar las opciones de la conversión mediante la flecha de la izquierda. Las opciones que encontramos al expandir el cuadro son:

2D/3D: podremos elegir entre representación 2D (2D Section/Elevation) o 3D (3D Section).

Source Geometry: nos permite definir si queremos incluir todos los objetos en la representación (Include All Objects) o elegir los objetos que queramos (Select Objects to Include).

Destination: por defecto la representación de insertará como un bloque en nuestro espacio de trabajo. En esta opción podremos elegir:

– Si queremos que el elemento se inserte como un bloque nuevo (Insert as new block).

– Reemplazar un bloque existente, el cual podremos seleccionar (Replace existing block).

– Si queremos que la representación se exporte como un nuevo archivo (Export to a file). En este caso debemos dar una ruta de destino y un nombre de archivo para el nuevo archivo, el cual será DWG.

Si presionamos el botón Section Settings accederemos al menú de las propiedades de este donde podremos definir diferentes atributos del corte el cual puede ser en 2D o en 3D. En el caso de 2D Section, el menú es el siguiente:

Donde podremos distinguir los siguientes elementos del corte:

Intersection Boundary: muestra los elementos que se cortan primero o los más cercanos afectos al corte, como los contornos de muros y otros. Aquí podremos definir por ejemplo, el color, capa (layer), grosor de línea, escala de línea y tipo de línea de los elementos cortados además de mostrar o no las líneas de división.

Intersection Fill: podemos definir atributos y en este caso también el hatch para el “relleno” del corte mismo (por defecto es de color gris sólido). Aquí podremos definir por ejemplo si queremos mostrar el relleno o no (Show=yes/no) el color, capa (layer), grosor de línea de hatch, escala de hatch, diseño de este y tipo de línea del hatch.

Background lines: en esta opción podremos editar las atribuciones de las líneas de fondo de nuestro corte (las que se ven atrás).  Aquí podremos definir por ejemplo si queremos que se muesteren o no (Show=yes/no), el color, capa (layer), grosor de línea, escala de línea y tipo de línea de los elementos cortados además de mostrar o no las líneas ocultas (hidden line).

Cut-away Lines: en esta opción podremos definir las líneas segmentadas que definen el corte mismo además de la proyección general de la elevación respecto de este. Podremos definir por ejemplo si queremos que se muestren o no (Show=yes/no), si queremos ver o no las líneas ocultas (hidden line), el color, capa (layer), grosor de línea, escala de línea y tipo de línea de los elementos proyectados.

Para que este concepto quede más claro podemos ver el siguiente ejemplo:

Corte 2D realizado mediante la opción cut-away lines. En este caso se muestran todas las líneas de corte segmentadas además de la proyección general de la elevación respecto del corte realizado (en gris). 

Curve Tangency Lines: en esta opción podremos editar las curvas de tangencia de nuestro corte. Estas últimas aparecen al tener elementos curvos vistos de fondo, como por ejemplo cuando cortamos una tina podremos ver la redondez del agujero mediante las curvas de tangencia.

En este ejemplo de modelo 3D vemos la aplicación de Curve Tangency Lines en el corte 2D, donde se definen las curvas del fondo de la piscina y las manillas de puertas mediante este tipo de líneas.

Podremos definir los atributos de forma independiente para los elementos 2D y 3D. Una vez que terminemos de definir los atributos, podemos aplicarlos a todas las secciones del corte si marcamos la opción apply settings to all sections.

En el caso de nuestro ejemplo elegimos la opción 2D Section/Elevation, clickeamos en la opción create y el programa nos pedirá un punto donde colocar el corte. Cuando lo definamos mediante un click, el programa nos pedirá el factor de escala en X. Elegimos el valor 1 y presionamos enter, luego nos pedirá el factor de escala en Y y le damos el mismo valor. Finalmente el programa nos pedirá el ángulo de rotación, asignamos el valor 0 y finalizamos con enter. La representación 2D y/o 3D se habrá creado en el plano XY.

En el ejemplo se ven los cortes 2D y 3D, insertados mediante bloques utilizando el comando sectionplanetoblock.

Scale factor de sectionplanetoblock escalará en X e Y según los valores que asignemos. Por ejemplo, si queremos que el corte 3D sea el doble de grande colocaremos el valor 2 en X e Y, y si queremos que el corte sea a la mitad del tamaño real colocaremos el valor 0.5 en ambos. Demás está decir que si queremos dejar el tamaño real del corte o elevación, debemos dejarlos en 1 puesto que este valor corresponde al tamaño verdadero del corte. Y si queremos que el bloque se deforme bastará colocar valores diferentes en X e Y. Esta opción funciona para bloques 2D y 3D respectivamente.

En el ejemplo vemos cortes 2D insertados en tres diferentes escalas. De arriba hacia abajo y de izquierda a derecha: X e Y=5, X=3 e Y=1, X e Y=0.5 respectivamente. En el corte de X=3 e Y=1 notamos como el dibujo se deforma debido a la diferencia de escala entre ambos ejes.

En el ejemplo vemos cortes 3D insertados en tres diferentes escalas. De arriba hacia abajo y de izquierda a derecha: X e Y=5, X=1 e Y=3, X e Y=0.5 respectivamente. En el corte de X=1 e Y=3 notamos como el modelo se deforma debido a la diferencia de escala entre ambos ejes.

Si vemos la barra de comandos, tendremos las mismas opciones que las vistas arriba:

section_plane_generate_section_options_insertion

Donde tenemos lo siguiente:

Basepoint (B): podemos establecer un punto de base para colocar el bloque.
Scale (S): en 3D podremos definir el factor de escala para todo el objeto.
X: podremos definir el factor de escala en X para asignar una escala no uniforme.
Y: podremos definir el factor de escala en Y para asignar una escala no uniforme.
Z: podremos definir el factor de escala en Z para asignar una escala no uniforme.
Rotate (R): podremos establecer el ángulo de rotación para la inserción del bloque.

En el caso que insertemos elementos o bloques 3D, las opciones de configuración serán las mismas que en 2D pero con la diferencia que no aparecerá la opción Curve Tangency Lines.

Utilizando las opciones de configuración de Section settings podremos editar los cortes 2D y 3D a nuestro gusto, tal como se puede apreciar en este ejemplo:

En el ejemplo se han cambiado algunos atributos y tipos de línea en la configuración 2D y 3D de Section settings, y el resultado final se muestra en ambos tipos de bloques.

Flatshot (vista de prespectiva 2D)

flatshot

El comando flatshot nos permitirá crear en 2D la representación ortogonal y/o cónica del objeto completo según la vista en la que estemos. Para ejecutarlo escribimos flatshot, presionamos enter y luego nos aparecerá el cuadro siguiente:

Donde tenemos las siguientes opciones:

Destination: por defecto la representación de insertará como un bloque en nuestro espacio de trabajo. En esta opción podremos elegir:

– Si queremos que el elemento se inserte como un bloque nuevo (Insert as new block).

– Reemplazar un bloque existente, el cual podremos seleccionar (Replace existing block).

– Si queremos que la representación se exporte como un nuevo archivo (Export to a file). En este caso debemos dar una ruta de destino y un nombre de archivo para el nuevo archivo, el cual será DWG.

Foreground lines: corresponde a las líneas principales de la representación 2D. Podremos elegir el color y el tipo de línea.

Obscured lines: corresponde a las líneas ocultas de la representación 2D. Podremos elegir el color, el tipo de línea y además si queremos mostrarlas activando la casilla Show.

Una vez que configuremos los parámetros damos click en create y podremos colocar la representación 2D de la misma forma como lo hacemos con generate section, ya que posee las mismas opciones de inserción.

En este ejemplo el modelo 3D está en planta, y a su lado distintas representaciones 2D mediante Flatshot en las cuales se ha mdificado el color de línea. Se destaca la del lado izquierdo en que son visibles sus líneas ocultas u Obscured lines.

Una cosa interesante de flatshot es que puede funcionar en algunos tipos de cámaras y si bien funciona en vistas de “cámara”, no siempre es así puesto que en algunas vistas internas Flatshot no trabajará bien o nos dará una proyección 2D deformada.

En el ejemplo vemos una representación 2D mediante Flatshot aplicado a una vista de cámara.

Este es el fin de este tutorial.

Publicidad
Otras webs del autor

TFCatalog.cl es un blog donde se revisan periódicamente figuras (juguetes) del universo Transformers, además de ser un catálogo personalizado de colección la cual está categorizada según línea.

http://www.tfcatalog.cl
Donar a MVBlog

Si le gusta esta web puede ayudar a mejorar su contenido, su calidad y a mantener activo este proyecto mediante su donación vía Paypal.

 
 

Publicidad
Suscríbase a MVBlog y reciba los últimos tutoriales, noticias y posts acerca de CAD, 3D y dibujo:
Gracias a FeedBurner
Reserve Hoteles

Si gusta de viajar, reserve alojamiento en booking.com y así ayuda a colaborar con este proyecto:
booking.com

Translate MVBlog to
Buscar en Google


Encuesta

El tema que más le interesa del blog es...

View Results

Loading ... Loading ...
Publicidad
Ultimos Apuntes
Ultimos AutoCAD
Ultimos Tutoriales 3D
Bibliografía (al azar)
Publicidad
Archivo de MVBlog
Tráfico del blog
  • 263358Total Visitas:
  • 324Visitas hoy:
  • 1607Visitas ayer:
  • 8173Visitas semana:
  • 18999Visitas por mes:
  • 1,121Visitas por día:
  • 6Visitantes online:
  • 17/03/2018Inicio: