Tutoriales y apuntes recomendados

Tutorial 14: Inserción de referencias o XREF, aplicado en 3D

Como ya lo hicimos anteriormente en el tutorial correspondiente a AutoCAD 2D, definiremos como referencias externas o "XREFs" a archivos específicos que cumplen la función de servir como guía, calco o referencia para realizar dibujos complejos. Estos archivos pueden ser de imagen, del mismo software (DWG) o también de otros programas similares como Microstation. También explicamos el cómo se realizaban bloques o dibujos complejos utilizando esta técnica, pero en este nuevo tutorial llevaremos el concepto de XREF a la aplicación práctica en la gestión y modelado de proyectos tridimensionales. XREF nos servirá de sobremanera en proyectos 3D de carácter complejo ...

Leer más...

AutoCAD 2D Tutorial 06b, Cota Leader

Como sabemos, dibujar en AutoCAD tiene como fin llevar lo dibujado en la pantalla a la realidad mediante la construcción de una pieza, una máquina, un producto o un proyecto de Arquitectura. Para que eso sea posible, la teoría del dibujo técnico establece dos requisitos indispensables que deben cumplirse si se ha dibujado algo que ha de fabricarse en un taller (si es una pieza, máquina o un producto) o construirse en un terreno, si es que hablamos de una edificación: - Que las vistas del dibujo no permitan dudas respecto a su forma. - Que la descripción de su tamaño sea ...

Leer más...

Maquetería 04: Introducción y tipos de maquetas

Concepto de maquetería Definiremos como Maquetería al arte de fabricar maquetas. A partir de esto definiremos una "maqueta" como una representación tridimensional o 3D de un objeto o evento. La maqueta puede ser funcional o no y además puede representar eventos u objetos reales o ficticios: Maqueta de una escena ferroviaria, en escala H0 (1:87). En este tipo de maquetas los trenes y las señales ferroviarias funcionan gracias a un complejo sistema eléctrico. Maqueta de la X-Wing de Star Wars, en escala 1:29. Este tipo de maquetas poseen funciones como abrir la cabina, mover las alas o una base para exhibición. La maqueta generalmente se suele ...

Leer más...

Maquetería 06: Materiales para maquetería

Uno de los fines de la maquetería es la representación de los proyectos y/o elementos de la forma más realista posible. Por esto mismo es que los materiales que se utilicen deben emular de la mejor forma posible la materialidad, texturas o colores del proyecto original como por ejemplo el concreto, el vidrio o la madera. Los materiales utilizados para la construcción de maquetas son muy variados, y de hecho prácticamente cualquier material puede utilizarse para este fin. Sin embargo en el mercado encontraremos varios materiales especialmente creados para este arte. Los materiales principales utilizados son los siguientes: El Cartón El cartón es ...

Leer más...

Comandos AutoCAD Tutorial 03: helpers o ayudantes de dibujo

En AutoCAD ya hemos aprendido las unidades básicas de dibujo y las cuatro formas en que podemos realizar estos en el programa. Sin embargo, dibujar elementos y formas complejos es algo difícil ya que el espacio donde trabajamos es un plano de carácter “ilimitado” y por ello es difícil colocar límites claros para nuestro trabajo y además de eso, es difícil dibujar "a pulso" en el programa sin cometer errores. Por esto mismo, AutoCAD pone a nuestra disposición una serie de ayudantes para nuestros dibujos llamados Helpers, de modo de facilitar la ejecución de estos y por ende, ahorrar tiempo ...

Leer más...

Comandos AutoCAD Tutorial 04: referencia a objetos (OSNAPS)

Si bien en un tutorial anterior estudiamos el concepto de coordenadas X e Y en AutoCAD y que evidentemente el programa lo sigue utilizando como base para el dibujo 2D y 3D, estas fueron pensadas originalmente para equipos sin las capacidades de hoy en día, cuando las primeras versiones de AutoCAD sólo tenían textos y la famosa barra de comandos. En ese entonces los comandos e instrucciones se ejecutaban exclusivamente desde el teclado escribiendo el nombre del comando en la barra y luego presionando la tecla enter. Gracias al avance de la informática y por ende del programa mismo, hoy ...

Leer más...

Comandos AutoCAD Tutorial 12: comandos Move y Copy

En este tutorial veremos los diferentes comandos de transformaciones move y copy en AutoCAD los cuales, como sus nombres lo indican, nos permitirán desplazar y/o copiar uno o más objetos hacia cualquier posición del área de dibujo. Además veremos aplicaciones exclusivas del comando copy como Array, el cual nos permitirá no solo copiar una gran cantidad de elementos sino que también nos permite distribuirlos en torno a un elemento o distancia. El comando Move Un comando importantísimo en AutoCAD es el llamado mover o simplemente move. Move nos permitirá mover desde una posición a otra uno o más elementos del dibujo sean estos ...

Leer más...

Comandos AutoCAD Tutorial 15: el comando Array

En este nuevo tutorial veremos otro de los comandos más versátiles de AutoCAD, ya que se trata del comando llamado array o lo que es lo mismo, la copia de objetos mediante matrices o arreglos las cuales permiten distribuir copias en el espacio y pueden ser de tipo rectangular, polar o en referencia a un recorrido o también llamado path. En este artículo veremos los tres tipos de matriz que posee el comando array además de aplicaciones exclusivas (mediante ejemplos y archivos) de este comando, e información complementaria respecto a su uso en el dibujo 2D y en otro tipo de ...

Leer más...

AutoCAD 2D Tutorial 06: Acotación y estilos de cota

Como sabemos, dibujar en AutoCAD tiene como fin llevar lo dibujado de la pantalla a la realidad mediante la construcción de una pieza, una máquina, producto o un proyecto de Arquitectura. Para que eso sea posible, la teoría del dibujo técnico establece dos requisitos indispensables que deben cumplirse si se ha dibujado algo que ha de fabricarse en un taller (si es una pieza, máquina o un producto) o construirse en un terreno, si es que hablamos de una edificación: - Que las vistas del dibujo no permitan dudas respecto a su forma. - Que la descripción de su tamaño sea exacta. ...

Leer más...

AutoCAD 2D Tutorial 09: layout y diseño para impresión

El final de cualquier dibujo que realicemos en AutoCAD se refleja siempre en el dibujo impreso. Para los arquitectos, por ejemplo, AutoCAD es ideal para la elaboración de planos, auténtica materia prima para su trabajo en el desarrollo y supervisión de una construcción. Sin embargo, AutoCAD es además una excelente herramienta para el diseño, lo que implica que solamente nos concentraremos en realizar el dibujo sin preocupaciones, ya que no importa si los dibujos están o no dispuestos de manera adecuada para elaboración del soporte (plano) ya que para esto tenemos el layout, el cual nos permitirá configurar el dibujo ...

Leer más...

Dibujo Técnico: tipos de perspectivas

Acerca de las perspectivas Para la representación de objetos en el dibujo técnico se utilizan diversas proyecciones que se traducen en vistas de un objeto o proyecto, las cuales suelen ser los planos o vistas 3D que nos permiten la interpretación y construcción de este. El dibujo técnico consiste en esencia en representar de forma ortogonal varias vistas cuidadosamente escogidas, con las cuales es posible definir de forma precisa su forma, dimensiones y características. Además de las vistas tradicionales en 2D se utilizan proyecciones tridimensionales representadas en dos dimensiones llamadas perspectivas. Los cuatro tipos de perspectivas base son: Isométrica (ortogonal) Militar (oblicua) Caballera (oblicua) Cónica ...

Leer más...

Dibujo Técnico: convenciones sobre el dibujo de Arquitectura

Acerca del dibujo arquitectónico Como ya sabemos, la expresión gráfica que se utiliza en la Arquitectura está definida por un conjunto de especificaciones y normas y a la vez estas son parte de lo que conocemos como dibujo técnico. El ojo humano está diseñado para ver en 3 dimensiones: largo, alto y ancho. Sin embargo, estas sufren distorsión dependiendo de la distancia y la posición donde esté situada la persona respecto al objeto que se observa. Por lógica no podríamos construir ese objeto si lo dibujásemos “tal cual” lo vemos, ya que para ello fuera posible el objeto tendría que mantener su ...

Leer más...

Dibujo Técnico: tipos de línea, grosores y usos

Las líneas en Arquitectura y en Ingeniería Las líneas en arquitectura y en dibujo técnico cumplen un papel fundamental en la representación de nuestro proyecto, pues nos permiten definir las formas y las simbologías precisas para la correcta interpretación y posterior construcción de este. Sin los distintos tipos de línea nuestro dibujo se parecería más a un dibujo artístico y sin los grosores, nuestro dibujo pasaría a ser plano y no sería comprendido en su totalidad por el ejecutante o constructor. Las líneas se clasifican, según la NCh657, en los siguientes tipos y clases: Los tipos de líneas se usan según los ...

Leer más...

Dibujo Técnico: la escala y sus aplicaciones

La escala de los planos Como ya sabemos, si dibujamos un proyecto de arquitectura o un objeto grande es imposible que lo podamos hacer "a tamaño real" pues los formatos de papel son limitados a un ancho máximo de 1,2 mts, y además por razones prácticas (tamaño, peso, transporte y portabilidad) y de lectura es inviable. Plano en tamaño real de Vardehaugen. A pesar de ser un concepto muy interesante y bonito de apreciar, nos muestra el problema de "dibujar" un proyecto en su tamaño verdadero. Si por el contrario dibujamos un objeto muy pequeño en un papel tenemos un problema similar, ya ...

Leer más...

AutoCAD 3D Tutorial 02: Modelado 3D con primitivas (templo griego)

Uno de los principios básicos del modelado 3D es que todos los objetos que existen en la realidad y en la naturaleza nacen a partir de las llamadas "primitivas". Una primitiva se define como la geometría 3D o Poliedros básicos que pueden representarse tridimensionalmente mediante maquetas físicas o virtuales. Una de las características más importantes de estas es que si estas se modifican y/o editan ya sea mediante adición de estas, sustracción u otras acciones, van definiendo formas mucho más complejas. Por esto mismo y al igual que en cualquier otro programa 3D, en AutoCAD existen geometrías 3D llamadas “primitivas básicas” ...

Leer más...

AutoCAD 3D Tutorial 11: Consejos para un buen modelo 3D

En este tutorial se pretende dar consejos para realizar una buena gestión del modelado 3D en AutoCAD sin morir en el intento (o lo que es igual, sin que nuestro computador colapse y/o que nuestro archivo 3D pese demasiados megas). Estos consejos están basados fundamentalmente en mi experiencia como docente y sobre todo como modelador y animador 3D, y la idea es que estos les sean útiles para todos quienes quieran gestionar de forma eficiente sus modelos 3D en AutoCAD, o para quienes están comenzando a realizar sus primeros proyectos. Para el correcto modelado 3D es necesario seguir ciertas pautas o ...

Leer más...

AutoCAD 3D Tutorial 13: UCS, aplicación en modelado 3D

En esta ocasión y dado que hacía mucho tiempo que no se realizaba un tutorial sobre modelado en AutoCAD 3D, hoy nos corresponde mostrar uno de los comandos más eficientes y a la vez de los menos utilizados en el mundo del 3D de AutoCAD: se trata del comando llamado UCS o "User Coordinate System" ya que este es un sistema que nos permite modificar la posición del sistema standard de los ejes coordenados (X,Y,Z), para adaptarlo a cualquier lugar y/o posición para así facilitar el modelado y/o adición o sustraccion de elementos. En esta ocasión modelaremos la estructura en ...

Leer más...

Planimetría 01: Planta de Arquitectura

Definiremos la planta de Arquitectura como un CORTE de tipo HORIZONTAL del edificio o proyecto mediante un plano virtual el cual a su vez remueve la parte superior del edificio. Este corte se realiza usualmente a 1,20 o 1,40 mts y nos sirve para definir la estructura y los espacios principales del proyecto o edificación, en su largo y ancho. La planta es fundamental para comprender un proyecto pues las proporciones y dimensiones de esta son la base para la construcción de este. El concepto queda graficado en el siguiente ejemplo: En el caso de la planta en particular, al estar el plano ...

Leer más...

Planimetría 02: Corte de Arquitectura

Podemos definir un corte de Arquitectura como una sección o "corte" (valga la redundancia) mediante un plano VERTICAL de una edificación, edificio o proyecto de Arquitectura, y nos sirve para definir la relación de escala, proporción, alturas y los elementos estructurales del proyecto frente al contexto. A diferencia de la planta, el corte puede en teoría efectuarse en cualquier parte del proyecto y por ello deberá definirse mediante una señalización de este en la planta y además tener un "sentido", es decir, una dirección hacia donde queremos visualizar los elementos del corte mismo. Este concepto se puede graficar mediante el siguiente ...

Leer más...

Planimetría 03: Elevaciones en Arquitectura

Definiremos como elevaciones a las proyecciones ortogonales bidimensionales de TODAS las caras visibles de un proyecto, vivienda o edificio, utilizando la ya conocida proyección ortogonal de puntos. Estas caras se proyectan en planos imaginarios paralelos a la cara en cuestión y por ello, pueden ser representadas mediante planos bidimensionales. Las elevaciones también se denominan fachadas o alzados. El concepto de las elevaciones puede graficarse en el siguiente esquema: En el esquema notamos que el Norte geográfico está representado en el modelo ya que el nombre de cada cara dependerá de su ubicación geográfica respecto al terreno. El resultado de la proyección de cada ...

Leer más...

Planimetría 04: Representación en planos de muros, puertas y ventanas

En este apunte se muestran las representaciones de los principales objetos en una planta de Arquitectura, en base principalmente a la NCh745 para el caso de las puertas y ventanas. Cabe destacar que estas normas son válidas tanto para el dibujo a mano como mediante software. Representación de muros en planta y corte En el caso de la Arquitectura la representación de muros más utilizada es la línea de contorno sin relleno. Esta debe ir valorizada según la importancia jerárquica o estructural del elemento. Este tipo de representación es válido tanto en planta como en cortes de un proyecto. Los ejemplos de abajo ...

Leer más...

Materiales

AutoCAD 3D Tutorial 04: Materiales parte 2, creación y mapeo

Cuando modelamos elementos tridimensionales en AutoCAD, por defecto el objeto tendrá un color asignado el cual suele corresponder al color del layer, y nos sirve para visualizar nuestro sólido en la viewport y en el render. Sin embargo, este es un color de base el cual le quita realismo a lo que modelemos, ya que uno de los principales objetivos del modelado en 3D además de poder visualizar en “tres dimensiones” un objeto o un proyecto de Arquitectura, es justamente generar escenas de carácter “fotorealista” o mejor dicho, el emular de la mejor forma posible los efectos atmosféricos, lumínicos, de texturas y otros de la realidad en nuestro modelo, para crear vistas creíbles y lo más reales posibles que puedan imprimirse y presentarse en una imagen 2D o en un video. Para poder lograr hacer esto, primero debemos comprender como la luz interactúa con los objetos que nos rodean. Debemos observar detenidamente los resaltes, colores, reflexiones de todas las cosas que estén en nuestro entorno y también en varios casos, debemos fotografiar o escanear superficies de objetos que después nos puedan servir de referencia o como una futura textura.

Una de las aplicaciones más interesantes en AutoCAD son los llamados materiales. ¿Qué es un material específicamente?. Pues bien, un material es un conjunto de comandos y propiedades específicas que nos sirven para emular los efectos propios de la realidad y aplicarlos en nuestros modelos 3D. Sin embargo, antes de iniciarnos en la aplicación de materiales en AutoCAD, debemos entender el concepto de Renderizado o de Render: este proceso consiste en la generación de imágenes fotorealistas a nuestros modelos 3D en bruto, para poder ser exportados por medio de un archivo de imagen o de video.

Para que esto sea posible, debemos seguir 3 pasos fundamentales los cuales son:

1) Aplicar representaciones virtuales de materiales a los diferentes elementos de un modelo 3D.

2) Generar la ambientación y los efectos atmosféricos necesarios que afectarán directamente al modelo: luces, fondo, niebla, sombras, etc.

3) Generar el renderizado o “Render” definitivo, elegir la calidad de la imagen o video y el formato de salida de estos.

Aunque entender estos conceptos es relativamente fácil, en el proceso de materialización de elementos 3D se requiere de muchos ensayos y muchas horas de práctica para lograr aplicar de forma correcta los materiales, luces y efectos y así lograr resultados satisfactorios, convincentes y realistas.

Por ejemplo, si queremos asignar un material de vidrio a una primitiva 3D redonda como por ejemplo un cilindro, debemos tomar en cuenta que este material tiene ciertas propiedades que deberán ser agregadas como por ejemplo su transparencia, para así lograr un buen efecto. Así como la transparencia, los materiales tienen muchas otras propiedades que nos permiten emular de la mejor forma posible un material de la realidad en el entorno 3D de AutoCAD.

En general, los materiales poseen las siguientes propiedades físicas que pueden ser representadas de forma visual en un modelo 3D de AutoCAD:

– Color.
– Textura.
– Rugosidad.
– Transparencia.
– Reflexión.
– Refracción.
– Relieve.
– Auto iluminación.
– Etc.

Por razones obvias otras propiedades de los materiales como rigidez, resistencia, densidad, maleabilidad y flexibilidad no pueden ser representados en un modelo 3D de AutoCAD, ya que estos por definición son elementos de visualización.

En esta segunda parte del tutorial veremos la edición de materiales en AutoCAD y en particular el Material Global, y aprenderemos a mapear correctamente nuestros materiales en los objetos.

Propiedades Generales de los materiales (Material Global)

Como ya sabemos, los materiales se definen por una serie de propiedades físicas y visuales que le darán a nuestros modelos 3D un aspecto más realista. Las propiedades dependerán del tipo de material seleccionado. Por defecto y por razones obvias, en el programa no es posible modificar los materiales de la biblioteca de materiales de Autodesk (Autodesk Library), sin embargo se pueden utilizar como base para generar nuevos materiales. Si queremos crear materiales desde cero, AutoCAD dispone de un material genérico llamado Material Global, el cual nos permitirá crear prácticamente todos los materiales tipo y por ello es el más indicado para crear materiales propios o editarlo si algún material de la biblioteca de Autodesk no se ajusta a nuestro proyecto.

Los parámetros de propiedades disponibles cambian en función del tipo de material que se está creando o actualizando. Para invocar al Material Global bastará ir al gestor de materiales y mediante doble click, seleccionarlo para ir a los parámetros de edición de este:

Material Global con todas sus propiedades desplegadas.

También podemos acceder al Material Global de AutoCAD si realizamos click con el botón secundario sobre el material y seleccionando la opción edit:

Otras funciones de las que disponemos en este modo son:

– Select Objects Applied To: selecciona en la Viewport los objetos a los que tengamos asignado el material. Por defecto no funciona en el material Global.
– Duplicate: duplica (copia) el material.
– Rename: cambia el nombre a nuestro material, aunque en el material Global por defecto está desactivado.
– Delete: permite borrar el material, aunque en el material Global por defecto está desactivado.
– Add to: permite añadir el material a nuestros favoritos (Favorites), Active Tool Palette o alguna carpeta personalizada.
– Purge All Unused: purga en el panel del usuario todos los materiales que no estemos usando en nuestros objetos.

En el editor de Material Global podremos ver las diferentes propiedades y parámetros de nuestro material para poder editarlo. Lo primero que debemos conocer es cómo este editor funciona:

Lo primero que veremos es la vista previa del material aplicado en un objeto predefinido que en este caso es llamado Object. Podemos seleccionar la flecha del lado derecho del material la cual nos asignará varias funciones respecto a la visualización de este:

Las funciones de visualización son Scene, Environment y Render Settings.

Scene: permite elegir el tipo de objeto en el que se desplegará nuestro material. Por defecto el Material Global se previsualiza en Object, pero mediante esta opción podremos elegir otras formas como un cubo, cilindro, vaso, muro u otro tipo de objetos.

Environment: permite elegir el tipo de envolvente atmosférico en el que será visible nuestro material en la previsualización. Por defecto el Material Global es Grid Light (luz de rejilla), pero mediante esta opción podremos elegir otros envolventes como como Plaza, Snowfield (campo nevado) y Warm Light (luz cálida).

Render Settings: permite elegir la calidad del render en la que será visible nuestro material en la previsualización. Por defecto su calidad es Quick (rápida), pero mediante esta opción podremos elegir otras calidades como Draft (borrador) y Production (producción, la más alta calidad).

Luego tenemos diversas flechas con las propiedades ya mencionadas como Generic o Transparency y si las presionamos, podremos visualizar o no los parámetros de edición de estas. Un aspecto importante de mencionar es que estas al ser propiedades generales, poseen varias subpropiedades y además, estas podrán habilitarse o no mediante el cuadrado del lado de la flecha. Esto activará o desactivará esa propiedad en específico para nuestro material.

En el ejemplo se ha activado la propiedad Reflectivity y apreciamos el impacto de este en la vista previa del Material Global.

El Material Global nos proporciona los siguientes parámetros o propiedades generales:

1) Generic.
2) Reflectivity.
3) Transparency.
4) Cutouts.
5) Self Illumination.
6) Tint.

Finalmente, otro aspecto importante de destacar en el Material Global es que si bien al renderizar y no materializar los objetos se tomará como base el color de su layer, al modificar el Material Global de inmediato este afectará a todos los objetos, independiente de su layer ya que Global es el material base de todos los objetos que no tengan asignado un material.

Material Global con todos los objetos en el layer 0 (por defecto).

Material Global con todos los objetos en un layer específico.

Material Global con una textura cargada y todos los objetos en un layer específico, donde notamos que todos se cargan con la textura independientemente de su layer (a menos que utilicemos Attach by Layer).

Por esto mismo, se recomienda es que antes de proceder a la creación de un material propio, realicemos una copia de Material Global a fin de que lo podemos renombrar como el material que queramos y además sea independiente de este, para que no afecte a todos los objetos por defecto.

Propiedades de Material Global

Las propiedades más importantes del editor del Material Global son:

1) Generic

Este es el parámetro más importante y el único que no puede ser desactivado, puesto que nos define el color y/o el aspecto exterior (textura) de un material. Sus parámetros son:

Color: todo material tiene un color base y por defecto, el Material Global nos indica el color “By Object” (color por objeto o layer). Sin embargo, si clickeamos en la flecha del lado derecho podremos cambiar este parámetro a un color personalizado, el cual afectará a todos los objetos que tengan aplicado el material.

Aplicación de un color personalizado en Generic, donde notamos que este afecta a todos los objetos por igual ya que es el Material Global.

Render del color seleccionado, en una composición 3D.

Debemos mencionar que el color de un material en un objeto es distinto en diferentes zonas de éste. Por ejemplo, si miramos una esfera de color naranjo, el color no es uniforme en ella sino que más bien, las zonas más lejanas de la luz tendrán un tono más oscuro mientras que las más cercanas a esta tendrán tonos más claros. Incluso, si la esfera es muy brillante, la zona de mayor reflejo tiende a parecer de color blanco.

Image (o mapas procedurales): controla el mapa de color difuso base del material. El color difuso o también llamado “diffuse” es el color que un objeto refleja cuando es iluminado por la luz directa (diurna) o la luz artificial. Por ello, en este parámetro podremos agregar una imagen a fin que esta actúe como “textura” determinada para hacer más realista y creíble nuestro material. Para poder elegir una imagen a insertar simplemente hacemos doble click en el área blanca del parámetro image.

Aplicación de una textura en Generic.

Render de la textura ya cargada, en una composición 3D.

Si ya tenemos una imagen asignada, podemos cambiarla simplemente clickeando en el nombre de esta.

Si clickeamos en la flecha del lado derecho podremos cambiar este parámetro a varios tipos de mapas y texturas el cual afectará a todos los objetos que tengan aplicado el material. También podremos editar o eliminar la imagen que hemos asignado ya que se activan los parámetros Edit Image y Remove Image.

En el ejemplo se ha aplicado el Mapa Procedural Checker.

Los mapas complementarios a Image se llaman Mapas Procedurales los cuales se pueden insertar de igual manera que esta, y en el tutorial 05 parte 1 y el tutorial 05 parte 2 nos referimos a estos en particular.

Finalmente, es importante considerar que el color que apliquemos en nuestro material mediante la opción Color (Color o Color By Object) siempre será independiente de la imagen o textura que carguemos.

Image Fade: controla el mezclado entre el color base y la imagen o textura, y por ende sólo funciona cuando esta se carga. Los valores de Fade van desde 0 a 100.

Mientras más bajo sea el valor de Fade más clara o transparente se verá la imagen en el objeto, y viceversa.

En los ejemplos se ha aplicado Fade en 50% en Color By Object y Color respectivamente.

Render de ambos ejemplos.

Glossiness: se refiere al “lustre” o brillo generado por el reflejo de la luz en el color o la textura, y se utiliza para simular una una superficie lustrosa en la cual la zona de máximo reflejo de la luz en el material es pequeña y su color especular es muy claro, e incluso llegando a blanco. En cambio, si el material es menos brillante el reflejo es más grande y por ello el color tiende a ser más cercano al del material original. Por esto mismo, esta opción controla el tamaño de las manchas o zonas de brillo del material, y sólo funciona si tenemos la propiedad Reflectivity activada.

Los valores de Glossiness van desde 0 a 100.

Renders de ejemplo de aplicación de Glossiness en una composición 3D. En la primera imagen se ha aplicado el valor 20 mientras que en la segunda, el valor de Glossiness es 90. En ambos casos se ha activado la propiedad Reflectivity.

En esta propiedad también podremos cargar imágenes y/o mapas procedurales para generar el efecto si presionamos la flecha del lado de Glossiness, tal como se aprecia en las imágenes:

Pasos y Render de ejemplo de aplicación de Glossiness en una composición 3D. Se ha cargado una imagen en la opción, y vemos el efecto en la viewport junto al render resultante. En este caso se ha activado la propiedad Reflectivity para apreciar el efecto final en el render.

Si queremos deshabilitar la carga de imágenes, iremos nuevamente a la flecha y una vez allí elegiremos la opción Slider.

Highlights: mediante esta opción podemos controlar el modo de dispersar los resaltes especulares en el material, y pueden ser de forma metalizada (Metallic) o no metalizada (Non-Metallic). Por defecto se activa la opción Non-Metallic.

Los resaltes de tipo Metallic dispersan la luz de acuerdo con el ángulo de esta en el objeto (anisotrópico) y son del color del material. En cambio, los resaltes de tipo Non-Metallic son del color de la luz que se refleja en el material.

Renders de ejemplo de aplicación de Highlights en una composición 3D. En la primera imagen se ha aplicado el resalte tipo Metallic, mientras que en la segunda el resalte es Non-Metallic. En ambos casos se ha activado la propiedad Reflectivity.

2) Reflectivity

En este parámetro aplicamos y medimos los valores de reflexión del material. La reflexión se define como el rebote o cambio de dirección y sentido de la luz en la superficie de un objeto. Esto genera un reflejo el cual puede ser parcial o casi absoluto, como por ejemplo en el caso de un espejo. Ideal para efectos de vidriado o cristal.

El control Direct nos define el nivel de reflejo en las superficies. Los valores de esta fluctúan entre 0 (sin reflexión) y 100 (reflexión máxima, similar a un espejo).

Renders de ejemplo de aplicación de Reflectivity Direct en una composición 3D. En la primera imagen su valor es 20, mientras que en la segunda su valor es de 100. En ambos casos la opción Oblique está en 0.

El control Oblique nos define la intensidad del resalte especular en las superficies. Los valores de estas fluctúan entre 0 (sin resalte) y 100 (resalte especular máximo).

Renders de ejemplo de aplicación de Reflectivity Oblique en una composición 3D. En la primera imagen su valor es 20, mientras que en la segunda su valor es de 100. En ambos casos la opción Direct está en 0.

En esta propiedad también podremos cargar imágenes y/o mapas procedurales para generar la reflexión, si presionamos la flecha del lado de las opciones Direct y/u Oblique. En este caso, para que los mapas de reflexión funcionen bien, el material debe ser brillante y la propia imagen de reflexión debe tener una resolución alta (al menos 512 x 480 píxeles).

Renders de ejemplo de aplicación de Reflectivity Image en una composición 3D. Se ha cargado una imagen en Direct y Oblique, y vemos el efecto en la viesport junto al render resultante. El valor de Glossiness es 90.

Si queremos deshabilitar la carga de imágenes, iremos nuevamente a la flecha y una vez allí elegiremos la opción Slider.

3) Transparency

Como sabemos, un objeto completamente transparente permite el paso de la luz a través de él y por ello, este parámetro controla el nivel y tipo de transparencia de un objeto. Sus parámetros son:

Amount: controla el nivel de trasparencia general. Mientras más alto sea este valor, el objeto se hace más transparente y visceversa.

Con el valor 0 el material es totalmente opaco, mientras que con el valor 100 es completamente transparente.

Proceso y render de ejemplo de aplicación de Amount en una composición 3D. En este caso, el valor de Amount es 20.

Proceso y render de ejemplo de aplicación de Amount en una composición 3D. En este caso, el valor de Amount es 90.

Image (o mapas procedurales): en este caso podremos cargar una imagen o mapa procedural que emulará la transparencia del objeto, desactivando el parámetro Amount.

Este proceso de carga se realiza igual que como se vió en las propiedades anteriores.

Proceso y render mediante la aplicación de una textura en Amount.

Importante: si el valor de Amount es 0, los objetos desaparecerán de la viewport pero no afectará el resultado en el render. Por lo tanto, se recomienda dejarlo en 1 para que estos sean visibles si cargamos la imagen, tal como se ve en el ejemplo de arriba.

Image Fade: controla el difuminado entre la transparencia y la imagen o textura, y por ende sólo funciona cuando esta se carga. Si el valor de Amount es 100 y el valor de Fade de la imagen es 0, todo será transparente mientras que si Amount es 0 y Fade es 100, se cargará la transparencia de la textura.

Importante: si el valor de ambos es 0 se generarán problemas en el render final.

Proceso y render de ejemplo de aplicación de Fade en una composición 3D. En este caso, el valor de Amount es 100 y el de Fade es 20.

Proceso y render de ejemplo de aplicación de Fade en una composición 3D. En este caso, el valor de Amount es 10 y el de Fade es 80.

Translucency: este parámetro controla el porcentaje de la luz que atraviesa el material o también llamado translucidez. Esto significa que un objeto traslúcido permitirá que parte de la luz pase a través de él y el resto de la luz se disperse en el objeto. Con el valor 0 no hay translucidez mientras que con 100 es la máxima posible. También podremos cargar una imagen o mapa procedural para generar este efecto si presionamos la flecha del lado derecho, cargándola de la misma forma vista antes.

Esta opción es ideal para ciertos efectos de vidriado o también para realizar cristal escarchado.

Render de ejemplo en una composición 3D, con el valor de Traslucency en 20 y Amount en 80.

Render de ejemplo en una composición 3D, con el valor de Traslucency en 100 y Amount en 80.

Render de ejemplo en una composición 3D, con el valor de Traslucency en 20 y una imagen cargada con Fade en 100.

Render de ejemplo en una composición 3D, con el valor de Traslucency en 100 y una imagen cargada con Fade en 100.

Proceso y Render de ejemplo en una composición 3D, pero esta vez se ha cargado una imagen en Translucency. En este último caso se ha activado Index of Refraction.

Index of Refraction: corresponde al índice de refracción o IOR, y por ello este parámetro controla el grado en el que los rayos de luz se curvan al atravesar el material y generan distorsión en el aspecto de los objetos al otro lado de este. Este índice varía según el material que queramos emular, y los valores por defecto que podemos seleccionar en esta opción son los siguientes:

– Air (aire): 1,00 (no hay distorsión).
– Water (agua): 1,33.
– Alcohol: 1,36.
– Quartz (cuarzo): 1,46.
– Glass (vidrio): 1,52.
– Diamond (diamante): 2,30.
– Custom (personalizado): podemos definir un valor personalizado.

Render con Index of Refraction de Air (aire) con el valor 1,00.

Render con Index of Refraction de Water (agua) con el valor 1,33.

Render con Index of Refraction de Glass (vidrio) con el valor 1,52.

Render con Index of Refraction de Diamond (diamante) con el valor 2,30.

Según el material que queramos emular podremos primeramente buscar el índice de refracción de este y luego colocar su valor en la opción Custom.

4) Cutouts

Este parámetro proporciona un efecto de transparencia en el material basado en la interpretación de la escala de grises de una textura. Por esto mismo, debemos saber que en el caso de Cutouts siempre debemos utilizar dos imágenes:

a) la primera imagen es la original con el contorno y la o las zonas que se transparentarán. Estas últimas preferentemente deben de color plano (idealmente blanco).

b) la segunda imagen determinará el o los contornos que serán visibles en color blanco puro, mientras que las zonas a transparentar serán totalmente negras.

Estos dos tipos de imágenes pueden ser visualizadas en el siguiente ejemplo:

 

En el ejemplo, la primera imagen es la original y el fondo blanco es la zona a transparentar, mientras que la segunda contiene el contorno e interior del arbusto en blanco mientras que su fondo es totalmente negro. La segunda imagen se conoce como “imagen cutouts” o “imagen opacity”.

Cuando cargamos la imagen en Cutouts, debemos tener en cuenta que en Generic cargaremos la imagen original mientras que en la propiedad Cutouts cargaremos la imagen opacity o “negativo”, tal como se aprecia en el siguiente ejemplo:

Ejemplo de aplicación de Cutouts en una composición 3D. En este caso se ha cambiado el fondo del segundo render para mostrar el efecto de la transparencia del arbusto. Nótese las sombras proyectadas las cuales respetan la forma de la imagen.

Cutouts es una de las propiedades más importantes de un material, pues nos permite crear efectos específicos que nos ahorrarán tiempo de renderizado y memoria, como por ejemplo una zona completa de rejillas o árboles 2D planos, ya que esta propiedad respeta la sombra de los contornos. Otra cosa importante es que si tenemos degradado u otro tipo de imagen opacity que los contenga, notaremos que las zonas claras se renderizarán opacas mientras que las más oscuras se transparentarán de forma gradual.

El mismo ejemplo anterior pero esta vez se ha aplicado el mapa procedural Gradient en Cutouts, donde apreciamos claramente la transparencia gradual de la imagen original.

Un segundo ejemplo donde podemos apreciar la creación de rejillas gracias a Cutouts.

El mismo ejemplo anterior pero sólo se ha cargado la imagen Cutouts, mientras que en Generic no hay imagen cargada (sólo layers).

5) Self-Ilumination

Este parámetro corresponde a la autoiluminación de un objeto. Este simula una iluminación interior de este (similar a una lámpara de mesa o una ampolleta, por ejemplo) sin necesidad de usar una fuente de luz externa, aunque esta luz no afecta a los objetos adyacentes a él. Sus parámetros más importantes son:

Filter Color: esta opción nos crea el efecto de un filtro de color sobre la superficie iluminada.

Por defecto este es de color blanco, pero podremos cambiar el color al que queramos. También podremos cargar una textura o mapa procedural para emular este efecto si presionamos la flecha del lado derecho, cargándola de la misma forma vista antes.

Render normal de una composición 3D, sin Self-Illumination aplicado.

Render de una composición 3D con Self-Illumination aplicado y Filter Color de color blanco (por defecto).

Render de una composición 3D con Self-Illumination aplicado y Filter Color de color rojo. En este caso el color de todos los objetos es Blanco, para apreciar mejor el efecto.

Render de una composición 3D con Self-Illumination aplicado y Filter Color de color azul. En este caso el color de todos los objetos es Blanco, para apreciar mejor el efecto.

Render de una composición 3D con Self-Illumination, filter color naranjo y el luminance Lamp Shade Exterior aplicados en la esfera y el torus. En este caso el color de todos los objetos es blanco, para apreciar mejor el efecto.

Render de una composición 3D con Self-Illumination aplicado y el mapa procedural Checker cargado. En este caso el color de todos los objetos es crema, para apreciar mejor el efecto.

Luminance: corresponde a la luminancia, la cual nos permite simular un material iluminado en una fuente de luz fotométrica. La cantidad de luz emitida se indica mediante un valor seleccionado el cual está en unidades fotométricas. En Luminance disponemos de las siguientes opciones:

– Dim Glow (resplandor tenue): 10.

– LED Panel (panel LED): 100.

– LED Screen (pantalla LED): 140.

– Cell Phone Screen (pantalla de teléfono celular): 200.

– CRT Television (televisión CRT antigua): 250.

– Lamp Shade Exterior (lámpara exterior): 1.300.

– Lamp Shade Exterior (lámpara interior): 2.500.

– Desk Lamp Lens (lámpara de escritorio): 10.000.

– Halogen Lamp Lens (lámpara halógena): 10.000.

– Frosted Bulb (bulbo esmerilado): 210.000.

– Custom (valor personalizado).

Luminance custom con valor 700.

Color Temperature: esta opción nos define la “temperatura” o mejor dicho, el color de la autoiluminación. En este caso, la temperatura definirá si nuestra luz es cálida o fría ya que los valores se expresan en grados Kelvin (K°). Color Temperature dispone de las siguientes opciones:

– Candle (vela): 1.850.

– Incandescent Bulb (bulbo incandescente): 2.800.

– Floodlight (luz inundada): 3.400.

– Moonlight (luz de luna): 4.100.

– Daylight Warm (luz de día cálida): 5.000.

– Daylight Cool (luz de día fría): 6.000.

– Xenon Arc Lamp (lámpara de Xenón): 6.420.

– TV Screen (pantalla de TV): 9.320.

– Custom (valor personalizado).

Color Temperature Custom con valor 1.000.

Color Temperature Custom con valor 20.000.

El valor por defecto de Color Temperature es 6.500 K°. Valores menores de K° generarán luz cálida mientras que los valores mayores generarán luz fría, tal como de aprecia en los ejemplos de arriba.

6) Bump

Esta propiedad nos permite generar el efecto de relieve para el material. Para ello, este parámetro agrega una imagen o mapa procedural que genera un efecto de relieve o rugosidad en la superficie del material de manera similar a como se hace con Cutouts, aunque a diferencia de este la imagen “bump” o de relieve es la misma original pero en escala de grises, ya que esta es más eficiente a la hora de simular el efecto. Esto se puede ejemplificar mediante las siguientes imágenes:

Imagen de la textura original y la imagen “bump” de esta, en escala de grises.

Su único parámetro es el siguiente:

Amount: nos permite controlar la intensidad y/o grado del relieve. Sus valores van desde -1.000, pasando por 0, hasta 1.000.

Los valores superiores generarán un relieve alto y los valores negativos invierten el relieve. El valor 0 lo desactiva.

Render normal de una composición 3D con el valor de Amount en 0.

Render normal de una composición 3D con el valor de Amount en 600.

Acercamiento del mismo render anterior para apreciar el efecto de Bump.

Si bien Bump nos genera un efecto de relieve, debemos tomar en cuenta que este efecto de por sí es limitado debido a que no afecta la superficie del objeto y que no puede generar efectos de sombreado sobre sí mismo. Por lo tanto, si se quiere mayor profundidad en un objeto, esta deberá generarse mediante técnicas de modelado.

7) Tint

Esta propiedad es el “tinte” y tiene por objeto teñir el material mediante un color de base, y sólo tiene como parámetro Tint Color.

Podemos cambiar este color base haciendo doble click en este y luego elegir el color que queramos. El efecto será visible tanto en la viewport como en el render, tal como se aprecia en el siguiente ejemplo:

Ejemplo de aplicación de Tint en una composición 3D.

Como conclusión final, el Material Global de AutoCAD nos permitirá realizar una multitud de efectos y está diseñado para crear prácticamente cualquier material desde cero, con la ventaja que podremos generar materiales bastante diversos e incluso raros, ya que podremos trabajar con todas las propiedades activadas al mismo tiempo, tal como el ejemplo siguiente:

Configuración y render de un material generado mediante la activación de casi todas las propiedades (sólo no se ha utilizado la propiedad Cutouts).

Manejando la asignación de materiales

Si bien ya hemos conocido las propiedades de Material Global y de los materiales en general, debemos saber que al ser archivos imagen, las texturas estarán limitadas por el tamaño de estas y por ende, mientras menos resolución tenga la imagen menor será la calidad del material en el render. Otro factor importante a considerar es la escala que generan estas en el objeto, ya que dependiendo de la unidad en la que estemos realizando el modelo las texturas no siguen un tamaño estandarizado, sino que su visualización dependerá más bien del tamaño de esta y del objeto que modelamos. Esto puede graficarse en el siguiente ejemplo:

Render de la textura en una composición 3D, esta última fue realizada en cms.

Render de la textura de la misma composición 3D, pero esta última se ha escalado 10 veces más pequeña que la original.

Por esto mismo es que debemos ajustar la escala e incluso la rotación de una textura mediante los parámetros de Mapeo. El Mapeo o “Mapping” de una textura es una función que define el tipo de distribución de esta en las caras de un objeto. Los parámetros de mapeo y opciones de visualización de la textura aparecen aparecen en el menú Visualize (Render), en el grupo llamado materials. En este panel tenemos lo siguiente:

1) Materials Browser: activa el editor de materiales ya visto.

2) Material/Textures On: activa o desactiva las propiedades de los materiales y/o la textura en la vista o viewport según se necesite. En este parámetro disponemos de tres opciones:

a) Material/Textures Off: desactiva las texturas y las propiedades de los materiales.
b) Material On/Textures Off: desactiva sólo las texturas, pero activa el resto de las propiedades del material.
c) Material/Textures On: activa las texturas y las propiedades del material.

También podemos invocarlo mediante el comando vsmaterialmode o vsmat. En este caso nos aparecerá en la barra de comandos y se nos pedirá un valor numérico para las tres opciones.

Los valores numéricos de estas son:

a) Material/Textures Off: 0.
b) Material On/Textures Off: 1.
c) Material/Textures On: 2.

3) Material Mapping: nos define el modo en que se distribuye la textura o el mapa procedural en una forma 3D determinada. Podemos invocarlo presionando en Material Mapping o escribiendo en la barra de comandos materialmap. Luego, elegimos mediante click el objeto y finalmente presionamos enter para aplicar el mapa.

Al aplicar los mapas en las geometrías 3D de AutoCAD, por defecto se asociarán a ella según los siguientes modos:

a) Planar: el mapa 2D se proyectará mediante un plano horizontal en la forma 3D. Por esto mismo es que las superficies que estén en paralelo con las vistas Top y Bottom se verán de forma correcta, mientras que el resto se verán estiradas en vertical.

b) Box: el mapa 2D se proyectará en forma de caja (cada textura se proyecta en una cara de esta) en la forma 3D, es el mapa por defecto y por ello es el más utilizado y recomendable por su versatilidad, ya que nos permite mapear prácticamente la totalidad de las formas 3D.

c) Cylindrical: el mapa 2D se proyectará mediante un cilindro (la textura se proyecta a lo largo del perímetro y dos planos extras para las bases del cilindro) en la forma 3D. por esto mismo es que las caras paralelas a Top y bottom se verán de formas correcta, mientras que en el resto se verá una sola textura estirada hacia los lados.

d) Spherical: el mapa 2D formará una esfera y se proyectará de esa forma en el elemento 3D.

Si invocamos el mapeado mediante materialmap, nos aparece lo siguiente en la barra de comandos:

Donde podremos aplicar los mapas anteriores mediante las iniciales de estos (Box, Planar, Sphere, Cylindrical) y además podremos acceder a las opciones CopY Mapping to y Reset Mapping, que veremos más adelante. Si aplicamos un mapa, nos aparecen las opciones de edición de este: MoveRotate y SWitch Mapping Mode.

Los mapeados pueden editarse según lo queramos para ajustar las dimensiones de las texturas o rotarlas si es necesario. Para ello, bastará aplicar un mapa a un objeto y observar las flechas azules que se nos indica en el mapa.

En el ejemplo se ha aplicado el mapa Box en la primitiva. Una de las flechas de edición se destaca en el círculo verde.

En el ejemplo anterior notamos que alrededor del mapeado las flechas se distribuyen a los lados y en la altura, si las seleccionamos y arrastramos con el mouse podremos editar los parámetros del mapa como por ejemplo definir el alto, largo y ancho de la textura:

En el ejemplo se ha modificado la longitud de las caras del mapa Box en la primitiva, mediante el movimiento de las flechas.

También tenemos más opciones de edición de la textura en la barra de comandos ya que notaremos que también existen dentro del comando materialmap las opciones de Mover (Move), Rotar (Rotate), Cambiar el tipo de mapeado (SWitch Mapping Mode) o volviendo al mapa por defecto reseteando el mapeado existente (ReseT).

En el ejemplo se mueven en el plano XY las caras del mapa Box en la primitiva, mediante la opción Move.

En el ejemplo se rotan las caras del mapa Box en la primitiva, mediante la opción Rotate.

En el ejemplo se vuelve a la configuración original del mapa Box en la primitiva, mediante la opción Reset.

En el ejemplo se cambia al mapa Cylindrical en la primitiva, mediante la opción Switch Mapping Mode.

En algunos tipos de mapeado (como planar o Cylinder) notaremos que existen líneas y/o curvas de color verde, esto nos indica el Seam o costura (destacado en rojo en la imagen siguiente) y esto no es más que el inicio y el fin de una textura determinada:

Por esto mismo es recomendable que las texturas sean del tipo trama, es decir, que puedan repetirse ilimitadamente sin distorsiones (de forma similar a un hatch o a una hilera de ladrillos) para eliminar esta costura y darle continuidad a la textura.

Además de las opciones de mapping, tenemos otros comandos de mapeado que son:

4) Remove Materials: si hemos asignado un material distinto del Material Global esta opción remueve el material de la forma 3D, volviendo al Material Global.

También podemos invocarlo en la barra de comandos mediante materialassign, luego seleccionar el objeto con click y luego presionando enter.

5) Attach by Layer: esta opción nos permite asignar un material ya definido en el panel de usuario a un layer determinado. Este puede ser basado en el material Global o predeterminado de AutoCAD (Autodesk Library). Por defecto, todos los layers están asignados al material Global.

Tambien podremos invocarlo en la barra de comandos mediante materialattach. Cuando lo ejecutamos, se abrirá el cuadro Material Attachment Options el cual contiene los materiales en el lado izquierdo y los layers de nuestro modelo en el derecho:

Cuadro Material Attachment Options sin materiales asignados, y su resultado en pantalla.

Si arrastramos un material hacia cualquier layer este se asignará de inmediato a este. Podremos quitar ese material del layer si presionamos la cruz roja que se encuentra a la derecha del material del layer, por lo cual volverá al material por defecto (Material Global).

Arrastrando un material a un layer en el cuadro Material Attachment Options, y su resultado en pantalla.

Lo interesante de este comando es que si modelamos cualquier forma 3D que esté asociada a ese layer, automáticamente tendrá asignado ese material.

El mismo ejemplo anterior pero en este caso se ha modelado una nueva Box, la cual está asociada al layer que está con el material asignado mediante Attach by Layer.

6) Copy Mapping Coordinates: si hemos editado las dimensiones de la textura en un objeto 3D cualquiera, esta opción nos permite copiar estas coordenadas de escala o de “mapeo” a otra forma 3D, tenga esta o no el mismo material aplicado.

También podremos invocarlo en la barra de comandos mediante materialmap ya que este es un subcomando de este, y se llama CopY Mapping to. Para ejecutarlo, una vez invocado el comando primeramente seleccionamos el objeto fuente (con las coordenadas a copiar), luego elegimos el objeto en el que queremos copiar las coordenadas y finalmente presionamos enter, así las coordenadas del primero serán copiadas al segundo, tal como se ve en el siguiente ejemplo:

En el ejemplo, se ha editado el material de la primera caja y luego sus coordenadas se han copiado a la segunda mediante Copy Mapping Coordinates.

7) Reset Mapping coordinates: si ya editamos las coordenadas de mapeo, al seleccionar esta opción volveremos a las coordenadas de mapeo por defecto. También podremos invocarlo en la barra de comandos mediante materialmap ya que este es un subcomando de este, y se llama Reset Mapping.

Para ejecutarlo, una vez invocado el comando seleccionamos la forma y luego presionamos enter. Con esto volveremos a las coordenadas por defecto del material al ser insertado en el objeto, tal como se ve en el siguiente ejemplo:

En el ejemplo, se ha editado el material de la caja y luego sus coordenadas han vuelto a las dadas por defecto al insertar el material en ella mediante Reset Mapping.

Como conclusión final, la creación de materiales propios en AutoCAD requerirá el conocimiento de todas las propiedades físicas y visibles del material que queramos realizar para replicarlo en AutoCAD utilizando las limitadas propiedades de Material Global además de muchas pruebas de ensayo y error, y de constantes renderizados para lograr el efecto deseado. En cuanto a Mapping, este será fundamental para determinar la escala aproximada para dar realismo a nuestros modelos 3D, y evitar desproporciones posteriores al realizar el renderizado final de nuestro proyecto.

Este es el fin de este tutorial. Puede hacer click en este enlace para ir al tutorial sobre Mapas Procedurales.

AutoCAD 3D Tutorial 05: Mapas Procedurales parte 2, Speckle a Wood.

En el tutorial anterior acerca de materiales vimos una introducción a estos, los aplicamos en los objetos 3D y además aprendimos a crear un material basándonos fundamentalmente en el Material Global. Sin embargo, si hemos explorado con detención el editor de materiales o Material Browser, nos daremos cuenta que en varias propiedades de ciertos materiales (como Generic) y en el Material Global nos aparecen más opciones además de la inserción de una imagen o textura. Estas opciones anexas a la imagen son las que conocemos como mapas procedurales. Estos se definen como mapas de texturas 2D y 3D que vienen predeterminadas en el programa y nos ayudan a dar diferentes efectos a ciertos parámetros de nuestro material como por ejemplo, Reflectivity y Transparency. Como ya sabemos de antemano, los efectos de nuestros materiales dependerán en gran medida de los mapas o imágenes que configuremos en cada propiedad del material, por lo que nos conviene realizar varias pruebas hasta lograr el resultado esperado. En este tutorial veremos los mapas procedurales y sus principales parámetros de edición, que en gran parte comparten con los del editor de materiales.

Editor de mapas procedurales

Para invocar al editor de mapas procedurales primero debemos ir al editor de materiales, y en particular editar el Material Global. Si marcamos todos sus parámetros a excepción de Tint, notaremos que en varios de estos encontraremos flechas hacia abajo, lo cual quiere decir que desde allí podremos tanto insertar imágenes como también invocar a los mapas procedurales.

Por ejemplo, si clickeamos la flecha que está a la derecha del parámetro image de Generic y seleccionamos la opción Image, se nos abrirá la ventana donde se nos pedirá la ruta para adherir una nueva imagen la cual se convertirá en la textura del material o del parámetro que queramos modificar, de la misma manera en que agregamos la textura de la forma tradicional.

Sin embargo también tenemos otras opciones anexas las cuales son los llamados Mapas Procedurales. Estos mapas son los siguientes:

a) Checker.
b) Gradient.
c) Marble.
d) Noise.
e) Speckle.
f) Tiles.
g) Waves.
h) Wood.

La función de estos mapas es generar y/o complementar efectos adicionales para nuestros materiales ya que estos poseen propieades similares, y también nos ayudan a simplificar el proceso de texturización ya que estos son relativamente fáciles de configurar. Incluso, los mapas procedurales también pueden utilizarse como materiales en algunos casos puntuales.

En esta segunda y última parte del tutorial abarcaremos desde el mapa Speckle hasta el mapa Wood.

e) Speckle

Este mapa nos genera un efecto de salpicado, similar al granizado o al estuco. El resultado de la aplicación del mapa Speckle en una composición 3D es el siguiente:

Y un render tipo del mapa es el siguiente:

Si clickeamos en la palabra edit que está debajo de la imagen de Speckle, accederemos a un nuevo panel de edición donde podremos editar los parámetros de este mapa.

Los parámetros que podremos editar son los siguientes:

Appearance

– Color 1/Color 2: podremos elegir el color de los mapas que forman el salpicado si hacemos click en la zona coloreada. Si presionamos la flecha del lado también podremos editar el color o invertir los colores mediante la opción Swap Colors.

En el ejemplo vemos la aplicación del cambio de colores en el mapa de Marble y además la opción Swap Colors.

Size: controla el tamaño del salpicado. Por defecto, el valor de la escala del salpicado es 0,04.

En el ejemplo, el valor del parámetro Scale es 60.

Transforms

– Link Texture Transforms: cuando esta opción está activada, todos los cambios realizados en los parámetros de escala, posición y repetición de este atributo se propagarán a todos los demás atributos en el material que usa una textura.

– Position, Offset X, Y y Z: desplaza la textura respecto al objeto en X, Y o Z según se haya definido. En este caso al ser un mapa en 3D, podremos modificar la posición de los 3 ejes por separado.

– XYZ Rotation: con este parámetro rotamos la textura respecto al origen en cualquiera de los 3 ejes. De todos modos, al ser un mapa 3D no rotará la textura completa respecto al objeto.

f) Tiles

Este interesante mapa nos permite emular de forma más o menos convincente pisos entramados ya sean bloques, baldosas, pavimentos o ladrillos ya que cuenta con varios diseños y tipologías de estos. El resultado de la aplicación del mapa Tiles en una composición 3D es el siguiente:

Y un render tipo del mapa es el siguiente:

Si clickeamos en la palabra edit que está debajo de la imagen de Tiles, accederemos a un nuevo panel de edición donde podremos editar los parámetros de este mapa.

Los parámetros que podremos editar son los siguientes:

Pattern

– Pattern type: nos muestra los diseños y/o tipos de aparejos los cuales son los siguientes:

1) Running Bond: es el tradicional aparejo de ladrillos de tipo soga, tizón o pandereta.

2) Common Flemish Bond: este tramado corresponde al aparejo flamenco, es similar al tramado inglés.

3) English Bond: este tramado corresponde al clásico tramado de tipo inglés.

4) 1/2 Running Bond: es el tradicional aparejo de ladrillos (soga) pero en lugar de estar apilados por el medio están por el “cuarto” del ladrillo que está debajo.

5) Stack Bond: esta trama corresponde al clásico tramado de baldosas, y es el que aparece por defecto al agregar el mapa.

6) Fine Running Bond: corresponde a un aparejo similar a Running pero de tipo refinado, el cual es perfecto para utilizar en pavimentos.

7) Fine Stack Bond: corresponde a un aparejo similar a Stack Bond pero de tipo refinado, el cual es perfecto para utilizar en pavimentos.

8) Custom: nos permite configurar un tipo personalizado de aparejo, basándode en el último tipo de trama que hemos elegido. Por defecto nos aparecerá la trama Stack Bond. Las opciones de Custom son las siguientes:

– Tile Count: nos permite dar el número de divisiones a la trama. Podemos definir el tamaño en la fila (Row) o la columna (Column), lo cual afectará el resultado final de nuestro aparejo.

Ejemplo de aplicación de Tile Count en una composición 3D.

Tile Appearance (apariencia del azulejo)

– Tile Color: en este parámetro podemos definir el color del azulejo. Si clickeamos la flecha del lado derecho podremos en lugar del color podemos agregar una textura o los diversos mapas como Checker, Marble, etc.

Ejemplo de aplicación de Tile Color en una composición 3D.

Un aspecto interesante de Tile Color es que si cargamos una imagen o mapa procedural, nos aparecerán los parámetros de edición de estos los cuales obviamente podremos manejar a nuestro gusto para un mejor resultado:

El mismo ejemplo anterior pero esta vez se ha cargado una imagen, y su resultado en pantalla.

El mismo ejemplo inicial pero esta vez se ha cargado el mapa Marble, y su resultado en pantalla.

Otro aspecto a destacar es que también podremos volver al tramado si presionamos la flecha que se encuentra al lado de la ruta de la imagen o el mapa procedural cargado, de forma similar a 3DSMAX:

– Color Variance: este es un parámetro muy interesante pues permite controlar la variación de color de los azulejos mediante variaciones aleatorias. Este rango varía entre 0 y 100.

– Fade Variance: este parámetro controla la variación del difuminado de los azulejos. Este rango varía entre 0 y 100.

– Randomize: aplica aleatoriamente patrones de variación de color a los azulejos.

Ejemplo de aplicación de los tres parámetros anteriores, en una composición 3D.

Grout Appearance (apariencia de la línea de gruta)

– Grout Color: En este parámetro podemos definir aspectos como el color de la línea. Si clickeamos la flecha del lado derecho podremos en lugar del color podemos agregar una textura o los diversos mapas como Checker, Marble, etc de la misma forma que con Tile Color.

Ejemplo de aplicación de Grout Color en una composición 3D.

Ejemplo de aplicación de Grout Color en una composición 3D, pero esta vez colocando una imagen.

– Gap Width: Controla la separación de las líneas tanto de forma vertical como horizontal. Si clickeamos en la cadena, el valor de ambos será el mismo.

Ejemplo de aplicación de Gap Width en una composición 3D.

– Roughness: Controla el nivel de rugosidad en la difusión de las líneas causando que estas se difuminen hasta casi desaparecer. Este rango varía entre 0 y 200.

Ejemplo de aplicación de Roughness en una composición 3D, junto con la resultante en la vista previa.

Stacking Layout (configuración del aparejo)

Este modo sólo aparece si seleccionamos el aparejo de tipo personalizado o Custom, y nos sirve para definir los atributos de la apilación de nuestra trama. Mediante Line Shift podremos controlar el movimiento lineal de las líneas y mediante Random la aleatorialidad del desplazamiento de estas.

Ejemplo de aplicación de Stacking Layout en una composición 3D, junto con la resultante en la vista previa.

Row Modify: Este modo está desactivado en las tramas tipo Stack o Running (podemos activarlos si queremos), y está habilitado en los otros tipos ya que nos permite modificar las subdivisiones de las filas del entramado. Sus parámetros son:

– Every: podemos controlar a cuántas filas se encuentra la subdivisión respectiva de aparejos.

– Amount: controla la anchura de los azulejos en la subdivisión respectiva de cada fila afectada.

Ejemplo de aplicación de Row Modify en una composición 3D, en base a la trama por defecto Stack Bond.

Column Modify: Este modo está desactivado en las tramas tipo Stack o Running (podemos activarlos si queremos), y está habilitado en los otros tipos ya que nos permite modificar las subdivisiones columnas del entramado. Sus parámetros son:

– Every: podemos controlar a cuántas columnas se encuentra la subdivisión respectiva de aparejos.

– Amount: controla la altura de los azulejos en la subdivisión respectiva de cada columna afectada.

Ejemplo de aplicación de Column Modify en una composición 3D, en base a la trama por defecto Stack Bond.

Transforms

– Link Texture Transforms: cuando esta opción está activada, todos los cambios realizados en los parámetros de escala, posición y repetición de este atributo se propagarán a todos los demás atributos en el material que usa una textura.

– Position, Offset X/Y: esta opción puede apreciarse mejor si desactivamos si la repetición o tile en X e Y del mapa. De manera similar al comando Offset de AutoCAD, Offset desplaza la textura de este respecto al objeto en X(U) o Y(V) según el valor que se haya definido previamente.

Si presionamos el ícono de la cadena, el valor de Offset será el mismo para ambos ejes.

En el ejemplo se ha definido un offset en X e Y igual a 100, eliminando la opción tiles en el mapa para ver el resultado.

Rotation: este parámetro nos permitirá rotar la textura del mapa respecto a su posición inicial la cual por defecto es 0°. Por ende, los valores de rotación variarán entre 0º y 360º.

En el ejemplo se ha rotado la textura en 45° mediante la opción Rotation.

Scale: Nos indica la escala o el tamaño de la textura del mapa. Como es un mapa en dos dimensiones, nos pedirá el valor de Width (largo) y de Height (alto), lo que implica que no necesariamente los módulos de Checker deban ser cuadrados.

Si presionamos el ícono de la cadena, el valor será el mismo para ambos.

En el ejemplo se ha modificado el tamaño de la textura a 600 en ambos lados, mediante la opción Scale.

Repeat: nos indica el tipo de repetición del mapa. Si activamos None solamente repetirá por única vez la textura del mapa, en cambio si activamos Tile la textura se repetirá a lo largo y/o a lo ancho de forma infinita.

En horizontal, la textura se repetirá en torno al eje X(U) mientras que que en vertical lo hará en torno al eje Y(V).

En el ejemplo se ha colocado la opción Tile en horizontal, mientras que en vertical se ha colocado la opción None.

En el ejemplo se ha colocado la opción Tile en vertical, mientras que en horizontal se ha colocado la opción None.

g) Waves

Este mapa 3D nos genera un efecto similar al de las ondas. El resultado de la aplicación del mapa Waves en una composición 3D es el siguiente:

Y un render tipo del mapa es el siguiente:

Si clickeamos en la palabra edit que está debajo de la imagen de Waves, accederemos a un nuevo panel de edición donde podremos editar los parámetros de este mapa.

Los parámetros que podremos editar son los siguientes:

Appearance

– Color 1/Color 2: podremos elegir el color de los mapas que forman las ondas si hacemos click en la zona coloreada. Si presionamos la flecha del lado también podremos editar el color o invertir los colores mediante la opción Swap Colors.

– Distribution: permite elegir la distribución del mapa, esta puede ser en 2D (circular) o 3D (esférica).

Ejemplo de aplicación de Color en una composición 3D.

Waves

Waves nos permite editar las ondas en sí, y los parámetros son los siguientes:

– Number: define la cantidad de ondas utilizadas en la trama y su rango varía entre 1 y 50. Por ejemplo, si quisiéramos simular agua calma debemos asignar un número bajo. Por defecto es 3.

– Len Min: define el intervalo mínimo de cada centro de la onda. Si los valores son menores las ondas se mostrarán de forma regular y si son mayores estas se mostrarán menos regulares.

– Len Max: define el intervalo máximo de cada centro de la onda. Si los valores son menores las ondas se mostrarán de forma regular y si son mayores estas se mostrarán menos regulares.

– Amplitude: nos permite controlar la magnitud de onda. Su valor varía entre 1 y 10.000.

En el ejemplo el valor de Amplitude es 2, y se muestra junto al render.

– Phase: desplaza el patrón de la onda. Su valor varía entre 1 y 10.000.

En el render de ejemplo el valor de Phase es 10.000.

– Random Seed: este valor permite cambia los patrones de las ondas para el caso que esta trama se utilice como emulador de agua o para lograr otros efectos. Su valor máximo es 65.000.

En el render de ejemplo el valor de Random Seed es 65.000.

Transforms

Link Texture Transforms: cuando esta opción está activada, todos los cambios realizados en los parámetros de escala, posición y repetir (tile) se propagarán a todos los atributos del material que utilicen una textura.

Position: Offset X, Y y Z: si la repetición o tile no está activada, desplaza la textura respecto al objeto en X, Y o Z según se haya definido. En este caso al ser un mapa en 3D podremos modificar la posición de los 3 por separado.

Rotation: con este parámetro rotamos la textura respecto al origen en cualquiera de los 3 ejes.

h) Wood

Este mapa 3D nos da un efecto de tipo madera. El resultado de la aplicación del mapa Wood en una composición 3D es el siguiente:

Y un render tipo del mapa es el siguiente:

Si clickeamos en la palabra edit que está debajo de la imagen de Wood, accederemos a un nuevo panel de edición donde podremos editar los parámetros de este mapa.

Los parámetros que podremos editar son los siguientes:

Appearance

– Color 1/Color 2: podremos elegir el color de los mapas que forman el salpicado si hacemos click en la zona coloreada. Si presionamos la flecha del lado también podremos editar el color o invertir los colores mediante la opción Swap Colors.

Ejemplo de aplicación de Color en una composición 3D.

– Radial Noise: Controla la aleatoriedad del grano de la madera, en torno al radio del mapa (plano perpendicular a este).

– Axial Noise: Controla la aleatoriedad del grano de la madera, en torno al eje del mapa (plano paralelo a este).

Render de una composición 3D con los valores por defecto de Wood.

El mismo ejemplo antrerior pero se han ajustado los parámetros de Axial y Radial Noise. Se ha aumentado el valor de Grain Thickness para apreciar mejor el efecto.

– Grain Thickness: aumenta el grosor del grano de la madera, y su valor va desde 0 a 100.

Render con el valor de Grain Thickness por defecto (0,5).

El mismo ejemplo pero esta vez con el valor de Grain Thickness en 20, y el render de este.

Transforms

Link Texture Transforms: cuando esta opción está activada, todos los cambios realizados en los parámetros de escala, posición y repetir (tile) se propagarán a todos los atributos del material que utilicen una textura.

Position: Offset X, Y y Z: si la repetición o tile no está activada, desplaza la textura respecto al objeto en X, Y o Z según se haya definido. En este caso al ser un mapa en 3D podremos modificar la posición de los 3 por separado.

Rotation: con este parámetro rotamos la textura respecto al origen en cualquiera de los 3 ejes.

Como acabamos de apreciar, los mapas procedurales pueden ayudarnos a simplificar el proceso de materialización de un objeto y a su vez pueden generar efectos diversos e interesantes según donde estos de apliquen, ya que al crear un material siempre tendremos la opción de agregar estos mapas en los diferentes parámetros del material Global o también en ciertos materiales estandarizados de AutoCAD. Podemos apreciar esto en el siguiente ejemplo:

En el ejemplo se ha aplicado el mapa Speckle en Generic, el mapa Tiles en Reflectivity, el mapa Waves en Transparency y el mapa Wood en Self-Illumination del material Global, y se muestra un render del resultado final.

Este es el fin de este tutorial.

3DSMAX Tutorial 06c: Materiales Arch & Design (Mental Ray)

3dsmaxmr_arch_design1Un material es la suma de un conjunto de parámetros y mapas (que pueden ser imágenes o vídeos) que pueden ser asignados a la superficie de un modelo 3D para describir como este refleja y/o absorbe a luz. La mezcla de todas estas propiedades nos permitirá emular los materiales del mundo real tales como mármol, ladrillo, plásticos, metales, etc.

En este tutorial especial veremos el material denominado Arch & Design el cual es exclusivo del motor de render Mental Ray, el cual viene incorporado en 3DSMAX y nos servirá para representar de manera realista los materiales más utilizados en Arquitectura y diseño.

Materiales Arch & Design

El material denominado Arch & Design es fundamental a la hora de realizar renders mediante el motor de render Mental Ray ya que este emula de manera convincente varios materiales conocidos en el área de la Arquitectura como por ejemplo el concreto, las cerámicas o elementos traslúcidos como vidrios o cristales. Como este material es exclusivo de Mental Ray sólo funciona si este motor de render está activado, si lo aplicamos en otro motor de render los materiales no serán visibles.

Tip: si tenemos instalado 3DSMAX Design en lugar de 3DSMAX, los materiales mostrados por defecto en todos los slots del editor de materiales serán los de Arch & Design.

Si estamos en el motor de render Mental Ray, podremos acceder al material Arch & Design cambiando el material en cualquier Slot para acceder al explorador de materiales (Material/Map Browser). Una vez allí, buscamos el material el cual está debajo de los materiales Standard, dentro de una persiana llamada Mental ray. Además del material mismo, en Mental ray encontraremos otros materiales propios de Autodesk y algunos de ellos son muy útiles como Metallic Paint, Car paint y Autodesk Ceramic. Una vez que hemos seleccionado y cargado el material en el Slot, el resultado es el siguiente:

Como notamos en la imagen, podemos ver el logo de Arch & Design y además tendremos los parámetros generales y propiedades del material los cuales están en una distribución diferente respecto a los del material de tipo Standard. En este caso no tendremos shaders ni configuraciones tan avanzadas como aquel, pero en Arch & Design dispondremos de materiales ya preconfigurados o también llamados “templates”, que simulan de forma realista los materiales más utilizados en Arquitectura y Diseño (de ahí su nombre). Los templates que disponemos son los siguientes:

Categoría Appearance & Attributes:

Matte finish: es un acabado de tipo mate u opaco, ya que posee entre un 5 y 10% de brillo. Es ideal para simular por ejemplo, una pintura sin brillo como el látex.

mr_arch_design04_mattefinish

Pearl finish: es el acabado perlado, el cual es semi-opaco ya que este posee entre un 20 y 35% de brillo. Se utiliza comúnmente en las pinturas de ventanas y sillas, aunque también puede usarse en paredes.

mr_arch_design04_pearlfinish

Glossy finish: es el acabado brillante ya que esta posee entre un 70 y 85% de brillo. Se utiliza preferentemente en las pinturas de adornos, puertas y armarios o para emular óleo.

mr_arch_design04_glossyfinish

Categoría Finishes:

Satin Varnished Wood: es la madera barnizada y satinada. El satinado se define como un tratamiento específico para lograr superficies tersas y brillantes o también se puede definir como un acabado intermedio entre opaco y brillante. Este tipo de acabado favorece la iluminación ambiental haciendo los espacios agradables a la vista. En este caso, el template incorpora su propia textura de madera.

mr_arch_design04_satinvarnishedwood

Glossy Varnished Wood: es la madera barnizada y brillante. Este template emula perfectamente una superficie de madera con brillo. En este caso, el template incorpora su propia textura de madera.

mr_arch_design04_glossyvarnishedwood

Rough Concrete: corresponde al concreto rugoso o en bruto. Al igual que en el caso anterior, este template incorpora su propio mapa para simular el relieve del hormigón.

mr_arch_design04_roughconcrete

Polished Concrete: corresponde al hormigón pulido y por ello con una superficie brillante, y se utiliza preferentemente en pisos y estacionamientos, además de proyectos de tipo industrial.

mr_arch_design04_polishedconcrete

Glazed Ceramic: corresponde a la cerámica brillante o vidriada y es perfecta para pisos, revestimientos y adornos de decoración.

mr_arch_design04_glazedceramic

Glazed Ceramic Tiles: es similar a la anterior pero es ideal para pisos ya que además de las cualidades de Glazed ceramic disponemos de todas las opciones que nos da el mapa tiles.

mr_arch_design04_glezadceramictiles

Glossy Plastic: corresponde al plástico brillante, y es perfecto para emular elementos de decoración y artefactos de cocina.

mr_arch_design04_glossyplastic

Matte Plastic: es un plástico pero con mucho menos brillo que en el caso de glossy, y se utiliza para definir la mayoría de los objetos que están hechos de este material.

mr_arch_design04_matteplastic

Masonry: corresponde a la albañilería. En este caso este template trae sus propias texturas que nos permiten emular ladrillos, ya que además de la textura diffusse incorpora relieve (Bump).

mr_arch_design04_masonry

Rubber: corresponde al material de caucho, y es utilizado preferentemente utilizado para emular elementos como neumáticos o gomas.

mr_arch_design04_rubber

Leather: corresponde al material de cuero, y es utilizado para emular elementos como ropa y tapicería hechas de este material. En este caso el template incorpora relieve (Bump).

mr_arch_design04_leather

Categoría Transparent Materials:

Glass (Thin Geometry): corresponde al vidrio pero en este caso sólo tomará en cuenta las dos dimensiones principales y no el espesor del vidrio, por lo tanto se recomienda colocar este template en elementos planos o bidimensionales como marcos.

mr_arch_design04_glassthingeometry

Glass (Solid Geometry): corresponde al vidrio emulado de forma realista ya que a diferencia del anterior este sí toma en cuenta el espesor o grosor, por lo tanto es perfecto para emular elementos de cristal como ventanas u adornos.

mr_arch_design04_glasssolidgeometry

Glass (Physical): este vidrio es el más completo de todos ya que además de tomar en cuenta las tres dimensiones, también incorpora la densidad del cristal haciendo que la emulación sea muy realista.

mr_arch_design04_glassphysical

Frosted Glass (Physical): es una variante del anterior pero en este caso es un cristal poroso o escarchado, que emula el cristal al ácido.

mr_arch_design04_glassfrostedphysical

Translucent Plastic Film (Thin): corresponde a la película de plástico traslúcido o también llamado acetato. en este caso funciona de manera similar a Glass Thin Geometry ya que toma en cuenta superficies bidimensionales.

mr_arch_design04_translucentplasticfilm_light

Translucent Plastic Film (Opaque): es una variante del anterior pero en este caso esta película toma en cuenta la geometría sólida del objeto.

mr_arch_design04_translucentplasticfilm_opaque

Water Reflective Surface: este template simula aguas poco profundas o a una distancia corta de cámara ya que no es transparente, pero es un buen material a la hora de realizar un render ya que ahorra bastante tiempo.

mr_arch_design04_waterreflectivesurface

Categoría Metals:

Chrome: simula el cromado de un metal. El cromo se define como un metal 100% reflectante, y se utiliza sobre todo en superficies metálicas muy pulidas como algunos adornos o elementos decorativos.

mr_arch_design04_chrome

Brushed Metal: corresponde al metal pulido el cual es básicamente un cromado pero con reflexiones borrosas. Es útil para la mayoría de las superficies metálicas.

mr_arch_design04_brushedmetal

Satined Metal: corresponde al metal satinado el cual es parecido al metal pulido pero con mayor opacidad, y es adecuado para superficies de aluminio o también para emular el acero inoxidable.

mr_arch_design04_satinedmetal

Copper: este material emula el cobre y con algunos ajustes también puede emular otros metales de brillo intenso como el oro o la plata.

mr_arch_design04_copper

Patterned Copper: es una variante del anterior pero en este caso se agrega un patrón o trama, y es más oscuro que Copper aunque se añade algo más de brillo, especularidad y sombreado de reflexión.

mr_arch_design04_patternedcopper

Atributos del material Arch & Design

Si bien el material Arch & Design posee templates ya predefinidos, cada uno de estos pueden ser editados ya que al igual que en el caso de los materiales Standard tenemos diversos parámetros de edición, algunos de ellos ya conocidos. Los parámetros que tenemos son los siguientes:

Categoría Diffuse:

mr_arch_design05a

Diffuse level: permite controlar el nivel de brillo del componente del color difuso (textura o el color del material). Si el valor de Diffuse level es menor que 1, se irá oscureciendo hasta llegar a negro en el valor 0.

mr_arch_design05_01

Ejemplo de modelos 3D de color rojo, con Diffuse level en 0.1, 0.5 y 1 respectivamente.

mr_arch_design05_02

Ejemplo de modelos 3D con una textura cargada y Diffuse level en 0.1, 0.5 y 1 respectivamente.

Color: corresponde al color del canal diffuse. Podemos cambiarlo fácilmente clickeando en el color por defecto, o cargar una textura haciendo click en el cuadro de la derecha de este. Si la textura es cargada, esta prevalece por sobre el color del material.

mr_arch_design05_03

Ejemplo de modelos 3D con color modificado.

mr_arch_design05_04

Ejemplo de modelos 3D con diferentes texturas aplicadas.

Roughness: controla la aspereza con que el canal diffuse se mezcla con el componente de ambiente. Mientras mayor sea el valor de Roughness el elemento tendrá más “polvo” y por ende será más áspero (por defecto su valor es 0,2). También se le puede cargar una textura en el cuadro del lado de la opción.

mr_arch_design05_05

Ejemplo de modelos 3D con Roughness en 0.1, 0.5 y 1 respectivamente (color).

mr_arch_design05_06

Ejemplo de modelos 3D con Roughness en 0.1, 0.5 y 1 respectivamente (textura).

mr_arch_design05_07

Ejemplo de modelos 3D con Roughness en 0.1, 0.5 y 1 respectivamente, pero esta vez con un mapa de textura aplicado en Roughness.

Categoría Reflection:

mr_arch_design08

Reflectivity: controla el nivel de reflectividad del material. Los valores de reflectividad y de color se combinan para definir el nivel de reflexión, así como la intensidad del resaltado también conocido como el reflejo especular.

mr_arch_design06_01

Ejemplo de modelos 3D con Reflectivity en 0.1, 0.5 y 1 respectivamente (color).

mr_arch_design06_02

Ejemplo de modelos 3D con Reflectivity en 0.1, 0.5 y 1 respectivamente (textura).

Color: corresponde al color general de la luz reflejada. Podemos cambiarlo fácilmente clickeando en el color por defecto, o cargar una textura haciendo click en el cuadro de la derecha de este.

mr_arch_design06_03

Ejemplo de modelos 3D con color Diffuse, Reflectivity en 1 y Reflectivity color aplicado. Colores de Izquierda a derecha: verde, azul y amarillo.

mr_arch_design06_04

Ejemplo de modelos 3D con color Diffusse, Reflectivity en 1 y Reflectivity color aplicado, pero esta vez se han colocado tres texturas diferentes.

mr_arch_design06_05

Ejemplo de modelos 3D con una textura en Diffusse, Reflectivity en 1 y Reflectivity color aplicado, pero esta vez se han colocado las mismas tres texturas anteriores.

Glossiness: este parámetro funciona con Reflectivity activado, y define el tipo de superficie que tendrá el “brillo” de la reflexión. Su valor máximo es 1 el cual es un espejo perfecto. Mientras más bajo sea el valor de esta, el brillo de la superficie será más difuso. También podremos agregar un mapa o una textura si clickeamos en el cuadro del lado de este parámetro, pero este mapa siempre será constante independiente del valor que hayamos colocado a Glossiness.

mr_arch_design06_07

Ejemplo de modelos 3D con Reflectivity en 1, con niveles de Glossiness en 0.1, 0.5 y 1 respectivamente.

mr_arch_design06_08

Ejemplo de modelos 3D con Reflectivity en 1 y los mismos valores anteriores, pero esta vez se ha cargado una textura en Glossiness.

Glossy Samples: corresponde a las Muestras de brillo. El número máximo de muestras o rayos que genera Mental Ray para crear reflejos brillantes. Los valores más altos hacen que el render sea más lento pero crean un resultado más suave. Los valores más bajos generan el render más rápido, pero crean un resultado más granulado. Glossy Samples sólo está disponible cuando el valor de Glossiness no es igual a 1.

mr_arch_design06_09

Ejemplo de modelos 3D con Reflectivity en 1 y Glossiness en 0,75, con niveles de Glossy Samples de 1, 16 y 32 respectivamente.

Nota: si el valor de Glossy Samples es igual a 0, las reflexiones toman la forma de un “espejo perfecto” y sólo un rayo es generado, independientemente del valor real de Glossiness. Se puede usar esto para aumentar el rendimiento de las superficies con reflejos muy débiles. Lo más destacado sigue respetando el valor de Glossiness. Las reflexiones más brillantes necesitan generar múltiples rayos para producir un resultado uniforme, y esto puede afectar al rendimiento. Por esto mismo, el material incluye dos características especiales que son:

Fast (inteprolate): cuando está activado, un algoritmo de suavizado permite que los rayos se vuelvan a utilizar y suavizar. El resultado son reflexiones brilantes más rápidas y suaves pero sacrifica un poco de precisión. Nota: Este método funciona mejor en superficies planas.

mr_arch_design06_10

Ejemplo de modelos 3D con Reflectivity en 1 y Glossiness en 0,75, con niveles de Glossy Samples de 1, 16 y 32 respectivamente. En todas se ha aplicado Fast (interpolate).

Hightlights+FG only: cuando está activado, Mental ray no genera los rayos de reflexión reales. En su lugar, sólo se muestran los reflejos más destacados, así como reflexiones suaves emulados con la ayuda de Final Gather. El modo Hightlights+FG only no ocupa tiempo de render adicional en comparación con una superficie no brillante (diffuse), sin embargo, puede producir resultados bastante convincentes. A pesar de que podría no ser completamente convincente para los objetos destacados en una escena, puede trabajar muy bien para elementos menos esenciales. Este modo tiende a funcionar mejor en materiales con reflejos débiles o reflejos muy brillantes.

mr_arch_design06_11

Ejemplo de modelos 3D con Reflectivity en 1 y Glossiness en 0,75, con niveles de Glossy Samples de 1, 16 y 32 respectivamente. En todas se ha aplicado Highlights+FG only.

Metal Material: los objetos metálicos realmente influyen en el color de su propia reflexión, mientras que otros materiales no lo hacen. Por ejemplo, una barra de oro tendrá reflejos de color dorado, pero una esfera de cristal de color rojo no tiene reflejos “rojos”. Este efecto en el metal es apoyado a través de la opción Metal Material. Cuando Metal Material está apagado, el parámetro de color de reflexión define el color, y el parámetro Reflectivity junto con la configuración de la BRDF define la intensidad y los colores de las reflexiones. Cuando está activado, el parámetro Diffuse Color define el color de reflejos, y el parámetro Reflectivity establece el “peso” entre las reflexiones difusas y las reflexiones brillantes (metálicas).

mr_arch_design06_12

Ejemplo de modelos 3D con Reflectivity en 1 y Glossiness en 0,75, con niveles de Glossy Samples de 1, 16 y 32 respectivamente. En todas se ha aplicado Metal material.

mr_arch_design06_13

Ejemplo de modelos 3D con Reflectivity en 1 y Glossiness en 0,75, con niveles de Glossy Samples en 8. En este caso se han combinado los modos en cada una de ellas. La primera copa está con Fast (interpolate) y highlights+FG only, la segunda con Highlights+FG only y Metal material, y la tercera posee todos los modos aplicados.

Categoría Refraction:

mr_arch_design09

Transparency: define el nivel de transparencia o refracción del material. Por defecto es 0 (no transparente) y su valor máximo es 1 (100% de transparencia). Con este parámetro podemos crear el efecto del vidrio, combinándolo con los parámetros de la categoría Reflection.

mr_arch_design07_01

Ejemplo de modelos 3D con Transparency en 0.1, 0.5 y 1 respectivamente. En este caso el nivel de Reflectivity es 1. Sin este parámetro activado, el valor 1 de Transparency haría invisible la tercera copa.

Color: corresponde al color de la refracción, y gracias a este parámetro podemos, por ejemplo, crear efectos como “vidrio de color” si el color en Diffuse es negro. Podemos cambiarlo fácilmente clickeando en el color por defecto, o cargar una textura haciendo click en el cuadro de la derecha de este.

mr_arch_design07_02

Ejemplo de modelos 3D con Diffuse color en rojo y Transparency color aplicado. En este caso el nivel de Reflectivity es 1. Los colores de izquierda a derecha son: verde, azul y amarillo.

mr_arch_design07_03

Ejemplo de modelos 3D con Diffuse color en negro y Transparency color aplicado. En este caso el nivel de Reflectivity es 1. Los colores de izquierda a derecha son: verde, azul y amarillo.

mr_arch_design07_04

Ejemplo de modelos 3D con una textura cargada en Diffuse y Transparency color aplicado. En este caso el nivel de Reflectivity es 1. Los colores de izquierda a derecha son: verde, azul y amarillo.

mr_arch_design07_04b

Ejemplo de modelos 3D con Diffuse color en rojo y Transparency color aplicado, pero esta vez se han cargado tres texturas diferentes. En este caso el nivel de Reflectivity es 1.

mr_arch_design07_04c

El mismo ejemplo anterior pero con una textura en Diffuse en lugar del color.

mr_arch_design07_04d

Ejemplo de modelos 3D con Diffuse color negro y Transparency color aplicado, pero esta vez se han cargado tres texturas diferentes. En este caso el nivel de Reflectivity es 1.

Glossiness: define la nitidez de la refracción o transparencia, que van desde 1 (transparencia completa y clara) hasta 0 (transparencia muy difusa o borrosa). Podemos cargar una textura haciendo click en el cuadro de la derecha de este.

mr_arch_design07_05

Ejemplo de modelos 3D con Glossiness en 0.1, 0.5 y 1 respectivamente. En este caso el nivel de Transparency es 0.5 y el de Reflectivity es 1.

mr_arch_design07_06

Ejemplo de modelos 3D con Glossiness en 0.1, 0.5 y 1 respectivamente pero con una textura en Diffuse. En este caso el nivel de Transparency es 0.5 y el de Reflectivity es 1.

mr_arch_design07_08b

Ejemplo de modelos 3D con Glossiness en 0.1, 0.5 y 1 respectivamente pero con una textura cargada en Glossiness.

Glossy Samples: corresponde a las Muestras de transparencia. El número máximo de muestras o rayos que genera Mental Ray para crear transparencias. Los valores más altos hacen que el render sea más lento pero crean un resultado más suave. Los valores más bajos generan el render más rápido, pero crean un resultado más granulado. Glossy Samples sólo está disponible cuando el valor de Glossiness no es igual a 1.

mr_arch_design07_07

Ejemplo de modelos 3D con Transparency en 0.5 y Glossiness en 0.75, con niveles de Glossy Samples de 1, 16 y 32 respectivamernte.

mr_arch_design07_08

Ejemplo de modelos 3D con Transparency en 0.5 y Glossiness en 0.75, con niveles de Glossy Samples de 1, 16 y 32 respectivamernte aunque en este caso hay una textura en Diffuse.

En el caso de Glossy Refraction, se necesitan generar múltiples rayos para producir un resultado uniforme y esto puede afectar al rendimiento general. Por esta razón, el material incluye la siguiente característica:

Fast (inteprolate): cuando está activado, un algoritmo de suavizado permite que los rayos se vuelvan a utilizar y suavizar. El resultado son reflexiones brilantes más rápidas y suaves pero sacrifica un poco de precisión. Nota: Este método funciona mejor en superficies planas.

mr_arch_design07_09

Ejemplo de modelos 3D con Transparency en 0.5 y Glossiness en 0.75, con niveles de Glossy Samples de 1, 16 y 32. En todas las copas se ha aplicado Fast (inteprolate).

IOR (Index Of Refraction):  define el índice de refracción, el cual mide la cantidad de un rayo de luz que se curva al entrar en un material, y la dirección en la que la luz se curva dependerá de si se está entrando o saliendo del objeto. Arch & Design utiliza la dirección de la normal de la superficie como referencia para averiguar si la luz está entrando o saliendo. Por tanto, es importante modelar los objetos transparentes y refractivos con las normales de la superficie que apunten en la dirección correcta. El valor de IOR a colocar dependerá del elemento que se quiera representar. Los índices de refracción más conocidos son:

Material IOR o índice de refracción
Vacío 1,0
Aire 1,0002926
Agua 1,33
Acetaldehído 1,35
Alcohol Metílico 1,329
Alcohol Etílico 1,36
Solución de azúcar (30%) 1,38
1-butanol (a 20 °C) 1,399
Glicerina 1,473
Heptanol (a 25 °C) 1,423
Solución de azúcar (80%) 1,52
Benceno (a 20 °C) 1,501
Metanol (a 20 °C) 1,329
Cuarzo 1,544
Vidrio (corriente) 1,52
Disulfuro de carbono 1,6295
Cloruro de sodio (sal común) 1,544
Diamante 2,42

Además de los valores de IOR, podremos ajustar el índice de refracción de forma manual manipulando los valores de la curva BDRF (Bi-directional Reflectance Distribution Function) que determina cuanto refleja un material al ser visto desde diferentes ángulos (la reflectividad depende del ángulo de visión).

mr_arch_design07_10

Ejemplo de modelos 3D con Diffuse en color negro, y valores de IOR de 1.0 (aire), 1.33 (agua) y 2.42 (diamante).

mr_arch_design07_11

Ejemplo de modelos 3D con una textura cargada en Diffuse, y valores de IOR de 1.0 (aire), 1.33 (agua) y 2.42 (diamante).

mr_arch_design07_12

Ejemplo de modelos 3D con Diffuse en rojo y color Transparency en rojo, y valores de IOR de 1.0 (aire), 1.33 (agua) y 2.42 (diamante).

Translucency: la translucidez o translucency se maneja como un caso especial de la transparencia ya que antes de utilizar translucency, debe existir primero un cierto nivel de transparencia o Transparency. Un material es translúcido cuando deja pasar la luz de manera que las formas se hacen irreconocibles ya que no se observan nítidamente los objetos. Un buen ejemplo de translucidez son las manos al ser expuestas a una fuente luminosa ya que en este caso la luz pasa por los dedos pero no se distingue “el hueso” de estos:

mr_arch_design_translucidez

Ejemplo de translucidez o translucency aplicado en una situación real.

La traslucidez o Translucency está pensada para ser utilizada principalmente en modo “lámina” o Thin (Advanced Rendering Options > Advanced Transparency Options > Thin Walled) y se usa para modelar elementos como cortinas, papel mantequilla u otros efectos similares. En el modo Thin walled el sombreado del lado inverso de la geometría “traspasa” hacia el lado frontal.

mr_arch_design07_13

El sombreador también funciona en el modo sólido (Advanced Rendering Options > Advanced Transparency Options > Solid) pero esta es una simplificación ya que emula sólo el transporte de la luz desde la parte posterior de un objeto a sus caras frontales y por ende no es un verdadero efecto de dispersión del subsuelo o SSS (Sub Surface Scattering). La dispersión del subsuelo es un efecto importante para la representación realista de materiales translúcidos como la piel, carne, grasa, frutas, leche, mármol, y muchos otros. Se puede generar el efecto SSS mediante el uso de Glossy Transparency junto con Translucency, pero esta no es tan rápida ni tan potente como los shaders o materiales SSS especiales que son exclusivos para lograr este efecto. Cuando se activa translucency, el peso y la configuración del color están disponibles e influirán en el render.

Weight: Determina qué porcentaje de transparency se utiliza como translucidez. Por ejemplo, si weight es 0, toda la transparency se utiliza como translucidez. Si weight es 1, el 100% de transparency se utiliza como translucidez. También podremos cargar un mapa o una textura haciendo click en el cuadrado del lado del valor.

mr_arch_design07_14

Ejemplo de modelos 3D con planos a los cuales se les ha aplicado Translucency, en modo Thin Walled. Los valores de Weight, de izquierda a derecha, son: 0, 0.5 y 1.

mr_arch_design07_14a

mr_arch_design07_14ab

Ejemplo de modelos 3D en los cuales se ha aplicado Translucency en modo Solid. Los valores de Weight, de izquierda a derecha, son: 0, 0.5 y 1.

mr_arch_design07_14abc

El mismo ejemplo anterior pero esta vez se les ha aplicado una textura en weight.

Color: corresponde al color de la translucidez. Podemos cambiarlo fácilmente clickeando en el color por defecto, o cargar una textura haciendo click en el cuadro de la derecha de este. También podremos cargar un mapa o una textura haciendo click en el cuadrado del lado del valor.

mr_arch_design07_14b

Ejemplo de modelos 3D con planos en los cuales se ha aplicado Translucency, en modo Thin Walled y valor de weight en 1. Los colores aplicados, de izquierda a derecha, son: amarillo, verde, azul.

mr_arch_design07_14c

Ejemplo de modelos 3D con planos en los cuales se ha aplicado Translucency, en modo Thin Walled y valor de weight en 1. En este caso se han cargado tres texturas diferentes en la opción color.

mr_arch_design07_14d

Ejemplo de modelos 3D en los cuales se ha aplicado Translucency en modo Solid. Los valores de Weight, de izquierda a derecha, son: 0, 0.5 y 1. En este caso se ha cargado una textura en la opción color.

Categoría Anisotropy:

mr_arch_design07_15

Anisotropy group: con esta opción podremos crear reflejos y refracciones de tipo anisotrópico ya que este controla la forma de los reflejos, es decir, el “ancho” y “alto” de estos. Con el valor 1, el reflejo es redondo y por ende se desactiva el efecto, es decir, no hay ninguna anisotropía. Con el valor 0.01, el reflejo es alargado. Los valores mayores o menores a 1 influirán en la forma de los reflejos. Podemos cargar una textura o un mapa haciendo click en el cuadro de la derecha de este.

mr_arch_design07_16

mr_arch_design07_16b

Ejemplo de modelos 3D en los cuales se ha aplicado Anisotropy con valores menores que 1. Los valores de Anisotropy, de izquierda a derecha, son: 0.01, 0.5 y 1.

mr_arch_design07_16bc

El mismo ejemplo anterior pero esta vez se les ha aplicado una textura en Anisotropy.

mr_arch_design07_16c

mr_arch_design07_16d

Ejemplo de modelos 3D en los cuales se ha aplicado Anisotropy con valores mayores que 1. Los valores de Anisotropy, de izquierda a derecha, son: 1, 8 y 16.

mr_arch_design07_16e

El mismo ejemplo anterior pero esta vez se les ha aplicado una textura en Anisotropy.

Rotation: Cambia la orientación de los reflejos. Este valor puede variar de 0 a 1 con el valor 1 = 360°. Así, por ejemplo, de 0.25 = 90° y 0.5 = 180°. Podemos cargar una textura o un mapa haciendo click en el cuadro de la derecha de este.

mr_arch_design07_17 mr_arch_design07_17b mr_arch_design07_17c

Rotation en valores 0.0, 0.25 y con una textura. El valor de Anisotropy es de 0.01.

mr_arch_design07_17d

mr_arch_design07_17e

Los valores de rotation anteriores, aplicados en modelos 3D.

Tip: Cuando se utiliza una textura para rotation, debemos asegurarnos que esta no tenga filtros antialiasing. Esto se puede hacer mediante el establecimiento de parámetros de Blur de la textura en 0. De lo contrario, los píxeles con antialiasing causarán vórtices locales en la anisotropía que aparecerán como errores en el texturizado.

Automatic/Map channel: en valores de 0 o superiores, permite aplicar opcionalmente anisotropía a un canal de mapa específico. Cuando se establece en Automatic, la rotación utiliza las coordenadas locales del objeto. Si elegimos Map Channel y establecemos un número de canal en Channel number, la rotación utiliza el espacio de cooordenadas del canal de mapeo especificado.

mr_arch_design07_18

Ejemplo de modelos 3D en los cuales se ha aplicado Rotation en diferentes grados. La primera copa tiene el valor 0 y no tiene textura, la segunda está en modo automatic y la tercera tiene la opción Map channel, con el canal 1.

Este es el final de este tutorial.

3DSMAX Tutorial 06b: Material Multi/Sub-object

3dsmax_msoUn material es la suma de un conjunto de parámetros y mapas (que pueden ser imágenes o vídeos) que pueden ser asignados a la superficie de un modelo 3D para describir como este refleja y/o absorbe a luz. La mezcla de todas estas propiedades nos permitirá emular los materiales del mundo real tales como mármol, ladrillo, plásticos, metales, etc.

En este tutorial especial veremos el material denominado Multi/sub-object, uno de los más importantes en cuanto a texturización y materialización de objetos se refiere ya que como sabemos, este material nos permite colocar muchos materiales en un solo slot y nos permite además clasificar de forma eficiente los materiales de uno o más elementos en específico.

El material Multi/Sub-Object

El material denominado Multi/sub-object es uno de los más utilizados en 3DSMAX, ya que por definición nos permite colocar muchos materiales dentro de un solo slot, es decir, podremos ahorrar bastante espacio en el editor de materiales (ya que el material mismo ocupa un solo slot) y a la vez podremos materializar objetos muy complejos o con muchos materiales diferentes utilizando sólo “un” material. Multi/sub-object es un material que está organizado de la siguiente manera:

En la imagen podemos reconocer, además del nombre del material, los espacios donde se inserta cada uno de los materiales (denominados sub-materiales) que van integrados en el material. Podremos asignar el número de sub-materiales que queramos mediante la opción Set Number:

3dsmax_mso02

En esta opción podremos asignar hasta 999 slots de sub-materiales para Multi/sub-object y por ende lo podremos limitar según la escena a materializar o la cantidad de materiales que queremos en un elemento específico. Otra cosa interesante de este material es que, al incorporarlo en el slot respectivo, el programa nos preguntará si queremos descartar el material antiguo (discard old material) o conservarlo como un “sub-material” (keep material as sub-material).

3dsmax_mso03

Al realizar lo segundo vemos que el material antiguo queda colocado en el primer casillero de los sub-materiales. Podremos acceder a sus propiedades simplemente clickeando en el nombre de este, y luego editarlo como un material cualquiera. De más está decir que a este sub-material se le puede agregar el material que se quiera ya sea un Standard, Arch & Design, Autodesk Library, etc. Si bien podremos agregar incluso un Multi/Sub-Ojbect, esto no es recomendable ya que creará problemas al asignar el material.

En el caso del material Multi/Sub-Object, es muy importante conocer cómo se organizan los sub-materiales pues esto es clave para poder materializar de buena forma la escena o el objeto:

3dsmax_mso04

En esta imagen podemos ver, de izquierda a derecha:

– La muestra del sub-material.
ID: El ID o identificador de este, junto a su número respectivo.
Name: El espacio para colocar un nombre.
Sub-Material: El sub-material mismo (editable como un material).
– El color del sub-material.
– El modo On/Off, que activa o desactiva el sub-material.

Lo más interesante del material Multi/Sub-object es sin duda el cómo se orgazanizan los sub-materiales para permitir su aplicación adecuada en los elementos a texturizar ya que estos utilizan un identificador especial llamado “ID”. ¿Pero qué es un ID? el ID es simplemente un número de identificación que será asignado a uno o más polígonos, y que nos permite asignar el material a los elementos que sólo compartan el mismo identificador y que coincida con el ID del sub-material. Esto es, si el primer material tiene el ID=1 será aplicado sólo en los polígonos que compartan este identificador. Para comprobar esto, dejamos el set number del sub-material en 6, dibujamos una box y le aplicamos el material Multi/Sub-Object a ella. El resultado es el siguiente:

3dsmax_mso05

Notamos de inmediato que el material gris sólo se aplica en la cara superior de la caja mientras el resto de las caras son negras pues no hay ningún material aplicado en el resto de los sub-materiales, por lo tanto podemos concluir que el ID de esa cara es el 1 el cual es el mismo del material original. Por lógica podemos deducir que una box tiene 6 IDs, es decir, uno por cada cara. Podemos verificar esto simplemente colocando materiales standard en cada sub-material, luego los editamos mediante el cambio de color y de nombre respectivo, y notamos que el resultado es el siguiente:

3dsmax_mso05b

3dsmax_mso05c

3dsmax_mso05d

Sub-materiales aplicados en las 6 caras de la caja, donde notamos cada ID por separado (uno por cada cara).

3dsmax_mso05e

3dsmax_mso05f

Efecto de la aplicación de Multi/Sub-Object en las primitivas básicas.

Utilizar los ID de forma correcta es la clave para texturizar los elementos 3D correctamente. Pero, ¿podemos cambiar los ID o seleccionar los que realmente queremos?. La respuesta es sí, y podremos hacerlo de las siguientes formas:

– Aplicando en el objeto 3D los modificadores llamados edit mesh o edit poly siempre y cuando este no esté en ninguno de estos modos, como por ejemplo las primitivas.

– Convirtiendo los elementos 3D a edit mesh o edit poly.

Es fundamental aplicar cualquiera de estos modificadores pues estos tienen la ventaja que podremos editar fácilmente los ID simplemente entrando al modo polígono (polygon) y luego seleccionando o modificando los ID de la o las caras. Yéndonos a nuestra box original,  le aplicamos el modificador edit mesh y nos vamos al modo polygon:

3dsmax_mso06

Como sabemos, Edit Mesh nos permite editar la estructura del objeto 3D mediante el movimiento y la transformación de las partes de esta ya sean vértices, lados, caras, polígonos o elemento. Estando en el modo polígono, bajaremos la persiana hasta encontrar el cuadro llamado Material:

3dsmax_mso07

Si elegimos cualquier cara de nuestra box, el cuadro inmediatamente nos mostrará el “ID” de esta en Set ID:

3dsmax_mso07b

En el ejemplo, al seleccionar la cara (en fucsia) se muestra el ID=6 de esa cara la cual es de color morado.

Teniendo la cara seleccionada, podremos cambiar el ID de esta simplemente escribiendo en Set ID el nuevo ID en lugar del anterior y luego presionando enter:

3dsmax_mso07c

El mismo ejemplo anterior, pero esta vez la cara con el ID=6 ha sido cambiada por el ID=5, y la cara ahora es azul.

Estando en el modo polygon, podremos elegir una o tantas caras como queramos. Si seleccionamos caras con distinto ID este no será mostrado en Set ID, pero podremos cambiar todos al mismo tiempo a uno solo ID realizando el mismo procedimiento anterior:

3dsmax_mso07d

3dsmax_mso07e

3dsmax_mso07f

En este ejemplo se han seleccionado las tres caras visibles y se han cambiado los ID de todas a 3, y ahora todas las caras son amarillas.

Ahora bien, también podremos seleccionar (no editar) todas las caras que tengan un mismo ID simplemente colocando el número de este y presionando el botón Select ID:

3dsmax_mso08

Si aplicamos el modificador o convertimos a Edit Poly el principio es el mismo que en el caso de edit mesh, pero el cuadro esta vez se llama Polygon: Material IDs:

3dsmax_mso09

El mismo ejemplo anterior, pero esta vez se ha aplicado el modificador edit poly.

Como vemos, la utilización de estos modificadores nos permitirá generar los criterios necesarios para poder materializar sin problemas los diferentes elementos 3D ya que los ID ordenan de forma eficiente los materiales a aplicar en el objeto. Si importamos elementos desde AutoCAD no necesitaremos aplicar modificadores ya que por defecto el modelo 3D es convertido a Edit Mesh, lo mismo si importamos modelos en formato 3DS.

3dsmax_mso10

Modelo 3D importado desde AutoCAD donde notamos que cada elemento ya está en modo edit mesh, y podremos seleccionar y/o editar los ID de cada uno de estos sin necesidad de colocar el modificador edit mesh o edit poly.

Finalmente, ¿Cómo podemos texturizar de forma correcta mediante el uso de Multi/Sub-Object? la respuesta es bastante simple, y consiste en saber qué y cuántos materiales componen un elemento en específico y cuántos slots de Multi/sub-Object ocuparemos para cada elemento de la escena. A modo de ejemplo, si vamos a texturizar un espacio interior relativamente sencillo podremos crear un Multi/Sub-Object que nos defina los elementos principales del espacio como muros, pisos y losas. Un ejemplo de esto sería lo siguiente:

3dsmax_mso11

3dsmax_mso12

En este ejemplo tenemos un solo Multi/sub-Object en el cual hemos definido sólo 2 IDs los cuales son: el ID 1 para los muros y la losa, y el ID 2 para el piso de baldosas. Como es un espacio sencillo no se necesita más que un solo Slot ya que tenemos pocos materiales aplicados, pero en modelos más complejos nuestro plan sería algo como lo siguiente:

ID 1: muros exteriores.
ID 2: muros interiores.
ID 3: cielo superior.
ID 4: piso flotante.
ID 5: piso de baño.
Etc.

Este material Multi/Sub-Object se podría llamar “espacio” o similar, de acuerdo a la escena que se está texturizando.

Podemos aplicar el mismo principio para cada elemento de la escena que queramos texturizar, y por supuesto podemos ocupar uno o más slots según el o los elementos presentes en ella. Por ejemplo, si quisiéramos texturizar una lámpara podríamos definirla de la siguiente manera:

ID 1: pantalla.
ID 2: madera de la lámpara.
ID 3: cristal.
ID 4: cromo (metales).
ID 5: soquete.
ID 6: ampolleta.
Etc.

Este material Multi/Sub-Object se podría llamar “lámpara” o similar.

Y aplicando este plan en el slot de materiales nos quedaría de la siguiente forma:

3dsmax_mso12b

Ejemplo del editor de materiales de una escena interior muy compleja, mostrando todos los slots utilizados por materiales Multi/Sub-Object y también mostrando los elementos y sub-materiales requeridos para la texturización de una lámpara.

En los modelos más complejos y sobre todo en escenas interiores, muchas veces requeriremos utilizar varios slots aplicando el material Multi/Sub-Object ya que deberemos texturizar muchos elementos complejos, como por ejemplo muebles o elementos tecnológicos, tal como se ve en el ejemplo de más arriba. Si bien este método es muy eficiente tiene una desventaja: en muchos casos debemos importar modelos desde afuera y no sabemos si los ID están ordenados de forma correcta, y por lo tanto tendremos que realizar todo el trabajo de asignación y definición de los IDs del elemento importado. Sin embargo, el hacerlo de forma correcta facilita mucho el trabajo a la hora de texturizar, sobre todo cuando tenemos modelos con muchos elementos, como suele ser el caso de espacios interiores como comedores o dormitorios.

IDs en ventanas, puertas y escaleras

Otra cosa muy interesante sobre los IDs es que si insertamos las puertas, ventanas y escaleras que vienen por defecto en 3DSMAX, los IDs de estas ya estarán organizados de manera automática y por ende, no será necesario aplicarles modificadores sino que basta con asignar correctamente el material según el ID de cada elemento:

3dsmax_mso13

3dsmax_mso13b

Efecto de la aplicación de Multi/Sub-Object en todos los tipos de ventanas en 3DSMAX. En este caso tenemos 5 IDs por cada ventana.

3dsmax_mso14

3dsmax_mso14b

Efecto de la aplicación de Multi/Sub-Object en todos los tipos de puertas en 3DSMAX. En este caso tenemos 5 IDs por cada puerta.

3dsmax_mso15

3dsmax_mso15v

Efecto de la aplicación de Multi/Sub-Object en todos los tipos de escaleras en 3DSMAX. En este caso tenemos 5 o 6 IDs dependiendo del tipo de escalera.

En el caso de las puertas y ventanas, estas vienen con 5 IDs definidos los cuales determinan los marcos estructurales de estas y el o los vidrios de estas. El ID=3 será siempre el cristal de ambas a menos que en el caso de las puertas desactivemos la opción glass y la dejemos como puerta tipo None o Beveled, ya que en estos últimos casos el ID=3 no aparecerá:

ventanas00

Distribución de los ID en una ventana junto con los materiales y elementos respectivos en que se ordena.

puertas05

Distribución de los ID en una puerta junto con los materiales y elementos respectivos en que se ordena.

Este es el final de este tutorial.

AutoCAD 3D Tutorial 05b: Guía interactiva sobre Materiales (PPT)

En este pequeño tutorial les presento una guía interactiva realizada en PPTX (Power Point 2010) sobre los materiales en AutoCAD 3D, donde se trata el tema de manera resumida y lo más clara posible. Este trabajo fue realizado gracias al Programa de Perfeccionamiento Docente Institucional (PPDI) de Instituto AIEP para el curso llamado “uso de medios”, el cual pretende dar a conocer al docente el potencial de las herramientas computacionales para así complementar la enseñanza en el aula.

Lo novedoso de esta presentación es que fue realizada mediante hipertexto, es decir, un sistema de hipervínculos entre las distintas diapositivas que funcionan de forma similar a una página web, permitiendo así la interacción del usuario con el archivo. Por esto mismo, para interactuar con esta basta abrir el archivo en PowerPoint e iniciar la presentación, para luego seguir las instrucciones indicadas en la diapositiva del menú.

Para descargar e iniciar de forma automática la presentación en PowerPoint, se debe hacer click en la imagen de abajo:

Si quiere descargar la Guía Interactiva PPTX comprimida en formato RAR, debe ir a la página de descarga de archivos de tutoriales.

AutoCAD 3D Tutorial 05: Mapas Procedurales parte 1, Checker a Noise.

En el tutorial anterior acerca de materiales vimos una introducción a estos, los aplicamos en los objetos 3D y además aprendimos a crear un material basándonos fundamentalmente en el Material Global. Sin embargo, si hemos explorado con detención el editor de materiales o Material Browser, nos daremos cuenta que en varias propiedades de ciertos materiales (como Generic) y en el Material Global nos aparecen más opciones además de la inserción de una imagen o textura. Estas opciones anexas a la imagen son las que conocemos como mapas procedurales. Estos se definen como mapas de texturas 2D y 3D que vienen predeterminadas en el programa y nos ayudan a dar diferentes efectos a ciertos parámetros de nuestro material como por ejemplo, Reflectivity y Transparency. Como ya sabemos de antemano, los efectos de nuestros materiales dependerán en gran medida de los mapas o imágenes que configuremos en cada propiedad del material, por lo que nos conviene realizar varias pruebas hasta lograr el resultado esperado. En este tutorial veremos los mapas procedurales y sus principales parámetros de edición, que en gran parte comparten con los del editor de materiales.

Editor de mapas procedurales

Para invocar al editor de mapas procedurales primero debemos ir al editor de materiales, y en particular editar el Material Global. Si marcamos todos sus parámetros a excepción de Tint, notaremos que en varios de estos encontraremos flechas hacia abajo, lo cual quiere decir que desde allí podremos tanto insertar imágenes como también invocar a los mapas procedurales.

Por ejemplo, si clickeamos la flecha que está a la derecha del parámetro image de Generic y seleccionamos la opción Image, se nos abrirá la ventana donde se nos pedirá la ruta para adherir una nueva imagen la cual se convertirá en la textura del material o del parámetro que queramos modificar, de la misma manera en que agregamos la textura de la forma tradicional.

Sin embargo también tenemos otras opciones anexas las cuales son los llamados Mapas Procedurales. Estos mapas son los siguientes:

a) Checker.
b) Gradient.
c) Marble.
d) Noise.
e) Speckle.
f) Tiles.
g) Waves.
h) Wood.

La función de estos mapas es generar y/o complementar efectos adicionales para nuestros materiales ya que estos poseen propieades similares, y también nos ayudan a simplificar el proceso de texturización ya que estos son relativamente fáciles de configurar. Incluso, los mapas procedurales también pueden utilizarse como materiales en algunos casos puntuales.

En esta primera parte del tutorial abarcaremos desde el mapa Checker hasta el mapa Noise.

a) Checker

El mapa Checker es similar al de un tablero de ajedrez ya que consiste en una serie de cuadrados continuos que se repiten y que se diferencian mediante dos colores base. El resultado de la aplicación del mapa Checker en una composición 3D es el siguiente:

Y un render tipo del mapa es el siguiente:

Si clickeamos en la palabra edit que está debajo de la imagen de Checker, accederemos a un nuevo panel de edición (similar al de edición de imágenes de una textura) donde podremos ajustar los parámetros de este mapa:

Los parámetros que podremos editar son los siguientes:

Appearance

– Color 1/Color 2: mediante esta opción podremos cambiar el color de la trama de tableros ya que por defecto, Color 1 será negro mientras que Color 2 será blanco. Para hacerlo, debemos hacer click en la zona donde nos muestra el color y accederemos al panel de muestra de color donde podremos cambiarlo.

– Soften: este parámetro suaviza los bordes de los cuadros creando un efecto de blurr o desenfoque. En el caso de los valores de Soften, 0 no aplicará el efecto mientras que 5 es el máximo posible.

Transforms

– Link Texture Transforms: cuando esta opción está activada, todos los cambios realizados en los parámetros de escala, posición y repetición de este atributo se propagarán a todos los demás atributos en el material que usa una textura.

– Position, Offset X/Y: esta opción puede apreciarse mejor si desactivamos si la repetición o tile en X e Y del mapa. De manera similar al comando Offset de AutoCAD, Offset desplaza la textura de este respecto al objeto en X(U) o Y(V) según el valor que se haya definido previamente.

Si presionamos el ícono de la cadena, el valor de Offset será el mismo para ambos ejes.

En el ejemplo se ha definido un offset en X e Y igual a 0, eliminando la opción tiles en el mapa para ver el resultado.

El mismo ejemplo anterior pero se ha definido un offset en X=5, donde notamos que el mapa se desplaza hacia la derecha y en torno al eje X (U).

El mismo ejemplo anterior pero esta vez se ha definido el offset en Y=5, donde notamos que el mapa se desplaza hacia arriba y en torno al eje Y (V).

Rotation: este parámetro nos permitirá rotar la textura del mapa respecto a su posición inicial la cual por defecto es 0°. Por ende, los valores de rotación variarán entre 0º y 360º.

En el ejemplo se ha rotado la textura en 45° mediante la opción Rotation.

Scale: Nos indica la escala o el tamaño de la textura del mapa. Como es un mapa en dos dimensiones, nos pedirá el valor de Width (largo) y de Height (alto), lo que implica que no necesariamente los módulos de Checker deban ser cuadrados.

Si presionamos el ícono de la cadena, el valor será el mismo para ambos.

En el ejemplo se ha modificado el tamaño de la textura a 6 en ambos lados, mediante la opción Scale.

El mismo ejemplo anterior pero se ha modificado el tamaño de la textura a 24 en ambos lados, mediante la opción Scale.

El ejemplo inicial pero se ha modificado el tamaño de la textura a Width=6 y Height=12, mediante la opción Scale.

Repeat: nos indica el tipo de repetición del mapa. Si activamos None solamente repetirá por única vez la textura del mapa, en cambio si activamos Tile la textura se repetirá a lo largo y/o a lo ancho de forma infinita.

En horizontal, la textura se repetirá en torno al eje X(U) mientras que que en vertical lo hará en torno al eje Y(V).

En el ejemplo se ha colocado la opción Tile en horizontal, mientras que en vertical se ha colocado la opción None.

En el ejemplo se ha colocado la opción Tile en vertical, mientras que en horizontal se ha colocado la opción None.

b) Gradient

Este mapa nos da un efecto de degradado en la superficie de la cara del objeto. El resultado de la aplicación del mapa Gradient en una composición 3D es el siguiente:

Y un render tipo del mapa es el siguiente:

Si clickeamos en la palabra edit que está debajo de la imagen de Gradient, accederemos a un nuevo panel de edición donde podremos editar los parámetros de este mapa.

Los parámetros que podremos editar son los siguientes:

Appearance

– Gradient type: podremos elegir el tipo o diseño de gradiente que queramos para nuestro mapa, ya que por defecto el gradiente es tipo Lineal (Linear). Tenemos disponibles varias alternativas que van desde desde la gradiente lineal, pasando por la diagonal, circular y terminando en el tipo tartan, los cuales obviamente inflluirán en el resultado final.

Gradient tipo Linear Asymmetrical.

Gradient tipo Box.

Gradient tipo Diagonal.

Gradient tipo Light Normal.

Gradient tipo Pong.

Gradient tipo Radial.

Gradient tipo Spiral.

Gradient tipo Sweep.

Gradient tipo Tartan.

– Color: dependiendo del tipo de gradiente seleccionada, este parámetro edita los colores seleccionando previamente la flecha o “nodo” de este (indicado en azul), o también se puede cambiar directamente en la persiana del color que se encuentra debajo. También podremos elegir el tipo de interpolación (mezcla) entre los colores de las gradientes. Si presionamos Invert Gradient invertiremos la secuencia.

Podemos agregar más nodos simplemente clickeando en el tramo de la gradiente que queramos y si los queremos eliminar, bastará seleccionarlo con el mouse y luego presionar la tecla Supr. El parámetro Position también nos permite colocar un nodo ya que en este caso le asignamos un valor numérico.

Noise

– Noise Type: aplica un efecto de ruido en el gradiente el cual nos dará un efecto de tipo puntillismo. En esta opción podremos elegir entre tres tipos: Regular, Fractal y Turbulence que nos generarán distintos efectos.

Noise Type Regular.

Noise Type Fractal.

Noise Type Turbulence.

Además de los parámetros base podemos controlar la cantidad de ruido mediante el parámetro Amount, el tamaño de este mediante el parámetro Size y el cómo se distribuye mediante el parámetro Phase.

Noise Type Regular y Amount=1.

Noise Type Regular y Size=3.

Noise Type Regular y Phase=5.

– Noise Threshold: este parámetro funciona en el render y nos permite definir el umbral o límite de ruido (Noise). Low especifica los límites bajos de ruido y sus valores van de 0 a 1. High especifica los niveles altos de ruido y sus valores van entre 0 a 1. Podemos suavizar el nivel de ruido mediante la opción Smooth.

Render normal de Gradient.

Render de Gradient con parámetros de Noise Threshold aplicados, en este caso Low=0 y High=1.

Transforms

– Link Texture Transforms: cuando esta opción está activada, todos los cambios realizados en los parámetros de escala, posición y repetición de este atributo se propagarán a todos los demás atributos en el material que usa una textura.

– Position, Offset X/Y: esta opción puede apreciarse mejor si desactivamos si la repetición o tile en X e Y del mapa. De manera similar al comando Offset de AutoCAD, Offset desplaza la textura de este respecto al objeto en X(U) o Y(V) según el valor que se haya definido previamente.

Si presionamos el ícono de la cadena, el valor de Offset será el mismo para ambos ejes.

En el ejemplo se ha definido un offset en X e Y igual a 5, eliminando la opción tiles en el mapa para ver el resultado.

Rotation: este parámetro nos permitirá rotar la textura del mapa respecto a su posición inicial la cual por defecto es 0°. Por ende, los valores de rotación variarán entre 0º y 360º.

En el ejemplo se ha rotado la textura en 45° mediante la opción Rotation.

Scale: Nos indica la escala o el tamaño de la textura del mapa. Como es un mapa en dos dimensiones, nos pedirá el valor de Width (largo) y de Height (alto), lo que implica que no necesariamente los módulos de Checker deban ser cuadrados.

Si presionamos el ícono de la cadena, el valor será el mismo para ambos.

En el ejemplo se ha modificado el tamaño de la textura a 6 en ambos lados, mediante la opción Scale.

Repeat: nos indica el tipo de repetición del mapa. Si activamos None solamente repetirá por única vez la textura del mapa, en cambio si activamos Tile la textura se repetirá a lo largo y/o a lo ancho de forma infinita.

En horizontal, la textura se repetirá en torno al eje X(U) mientras que que en vertical lo hará en torno al eje Y(V).

En el ejemplo se ha colocado la opción Tile en horizontal, mientras que en vertical se ha colocado la opción None.

En el ejemplo se ha colocado la opción Tile en vertical, mientras que en horizontal se ha colocado la opción None.

c) Marble

Marble nos muestra una textura de tipo mármol la cual tiene la particularidad de ser un mapa procedural en 3D, es decir, el mapa posee 3 coordenadas: U, V y W (X, Y y Z). El resultado de la aplicación del mapa Marble en una composición 3D es el siguiente:

Y un render tipo del mapa es el siguiente:

Si clickeamos en la palabra edit que está debajo de la imagen de Marble, accederemos a un nuevo panel de edición donde podremos editar los parámetros de este mapa.

Los parámetros que podremos editar son los siguientes:

Appearance

– Stone/Vein color: podremos elegir el color de los mapas que emulan la piedra si hacemos click en la zona coloreada. Si presionamos la flecha del lado podremos editar el color o también invertir los colores en la piedra (Stone) y en la veta (Vein) mediante la opción Swap Colors.

– Vein Spacing: este parámetro modifica el espacio entre las vetas.

– Vein Width: este parámetro edita el espacio entre las zonas de piedra y la veta.

Transforms

– Link Texture Transforms: cuando esta opción está activada, todos los cambios realizados en los parámetros de escala, posición y repetición de este atributo se propagarán a todos los demás atributos en el material que usa una textura.

– Position, Offset X, Y y Z: desplaza la textura respecto al objeto en X, Y o Z según se haya definido. En este caso al ser un mapa en 3D, podremos modificar la posición de los 3 ejes por separado.

– XYZ Rotation: con este parámetro rotamos la textura respecto al origen en cualquiera de los 3 ejes. De todos modos, al ser un mapa 3D no rotará la textura completa respecto al objeto.

d) Noise

Noise aplica un efecto de textura ruidosa y es independiente del Noise de Gradient y al igual que Marble, es un mapa procedural 3D. El resultado de la aplicación del mapa Noise en una composición 3D es el siguiente:

Y un render tipo del mapa es el siguiente:

Si clickeamos en la palabra edit que está debajo de la imagen de Noise, accederemos a un nuevo panel de edición donde podremos editar los parámetros de este mapa.

Los parámetros que podremos editar son los siguientes:

Appearance

– Noise Type: al igual que en Noise de Gradient, nos permite definir el tipo de ruido o noise. Podemos elegir entre tres tipos diferentes de ruido: Regular, Fractal y Turbulence, que nos generarán distintos efectos de ruido en el material.

Noise Type Regular. En este caso el valor de Scale es 3.

Noise Type Fractal. En este caso el valor de Scale es 3.

Noise Type Turbulence. En este caso el valor de Scale es 3.

– Size: con este parámetro podremos controlar el tamaño del noise.

En el ejemplo el valor de Scale es 10.

– Color 1/Color 2: podemos elegir los colores para cada zona de ruido. Si clickeamos la flecha del lado derecho podremos también mezclar los diversos mapas como Checker, Marble, etc.

Noise Threshold

Este parámetro funciona en el render y al igual que en Gradient nos permite definir el umbral o límite de ruido o Noise. Low especifica los límites bajos de ruido y sus valores van de 0 a 1. High especifica los niveles altos de ruido y sus valores van entre 0 a 1. Podemos controlar la aleatoriedad del ruido mediante la opción Phase.

Transforms

– Link Texture Transforms: cuando esta opción está activada, todos los cambios realizados en los parámetros de escala, posición y repetición de este atributo se propagarán a todos los demás atributos en el material que usa una textura.

– Position, Offset X, Y y Z: desplaza la textura respecto al objeto en X, Y o Z según se haya definido. En este caso al ser un mapa en 3D, podremos modificar la posición de los 3 ejes por separado.

– XYZ Rotation: con este parámetro rotamos la textura respecto al origen en cualquiera de los 3 ejes. De todos modos, al ser un mapa 3D no rotará la textura completa respecto al objeto.

Como acabamos de apreciar, los mapas procedurales pueden ayudarnos a simplificar el proceso de materialización de un objeto y a su vez pueden generar efectos diversos e interesantes según donde estos de apliquen, ya que al crear un material siempre tendremos la opción de agregar estos mapas en los diferentes parámetros del material Global o también en ciertos materiales estandarizados de AutoCAD.

Podemos apreciar esto en el siguiente ejemplo:

En el ejemplo se ha aplicado el mapa Checker en Generic, el mapa Gradient en Reflectivity, el mapa Marble en Transparency y el mapa Noise en Self-Illumination del material Global, y se muestra un render del resultado final.

Este tutorial continúa en la parte 2. Puede ir a la segunda parte haciendo click en este enlace.

AutoCAD 3D Tutorial 04: Materiales parte 1, introducción y aplicación

Cuando modelamos elementos tridimensionales en AutoCAD, por defecto el objeto tendrá un color asignado el cual suele corresponder al color del layer, y nos sirve para visualizar nuestro sólido en la viewport y en el render. Sin embargo, este es un color de base el cual le quita realismo a lo que modelemos, ya que uno de los principales objetivos del modelado en 3D además de poder visualizar en “tres dimensiones” un objeto o un proyecto de Arquitectura, es justamente generar escenas de carácter “fotorealista” o mejor dicho, el emular de la mejor forma posible los efectos atmosféricos, lumínicos, de texturas y otros de la realidad en nuestro modelo, para crear vistas creíbles y lo más reales posibles que puedan imprimirse y presentarse en una imagen 2D o en un video. Para poder lograr hacer esto, primero debemos comprender como la luz interactúa con los objetos que nos rodean. Debemos observar detenidamente los resaltes, colores, reflexiones de todas las cosas que estén en nuestro entorno y también en varios casos, debemos fotografiar o escanear superficies de objetos que después nos puedan servir de referencia o como una futura textura.

Una de las aplicaciones más interesantes en AutoCAD son los llamados materiales. ¿Qué es un material específicamente?. Pues bien, un material es un conjunto de comandos y propiedades específicas que nos sirven para emular los efectos propios de la realidad y aplicarlos en nuestros modelos 3D. Sin embargo, antes de iniciarnos en la aplicación de materiales en AutoCAD, debemos entender el concepto de Renderizado o de Render: este proceso consiste en la generación de imágenes fotorealistas a nuestros modelos 3D en bruto, para poder ser exportados por medio de un archivo de imagen o de video.

Para que esto sea posible, debemos seguir 3 pasos fundamentales los cuales son:

1) Aplicar representaciones virtuales de materiales a los diferentes elementos de un modelo 3D.

2) Generar la ambientación y los efectos atmosféricos necesarios que afectarán directamente al modelo: luces, fondo, niebla, sombras, etc.

3) Generar el renderizado o “Render” definitivo, elegir la calidad de la imagen o video y el formato de salida de estos.

Aunque entender estos conceptos es relativamente fácil, en el proceso de materialización de elementos 3D se requiere de muchos ensayos y muchas horas de práctica para lograr aplicar de forma correcta los materiales, luces y efectos y así lograr resultados satisfactorios, convincentes y realistas.

Por ejemplo, si queremos asignar un material de vidrio a una primitiva 3D redonda como por ejemplo un cilindro, debemos tomar en cuenta que este material tiene ciertas propiedades que deberán ser agregadas como por ejemplo su transparencia, para así lograr un buen efecto. Así como la transparencia, los materiales tienen muchas otras propiedades que nos permiten emular de la mejor forma posible un material de la realidad en el entorno 3D de AutoCAD.

En general, los materiales poseen las siguientes propiedades físicas que pueden ser representadas de forma visual en un modelo 3D de AutoCAD:

– Color.
– Textura.
– Rugosidad.
– Transparencia.
– Reflexión.
– Refracción.
– Relieve.
– Auto Iluminación.
– Etc.

Por razones obvias otras propiedades de los materiales como rigidez, resistencia, densidad, maleabilidad y flexibilidad no pueden ser representados en un modelo 3D de AutoCAD, ya que estos por definición son elementos de visualización.

En esta primera parte del tutorial nos introduciremos a los materiales en AutoCAD y conoceremos el gestor de materiales además de los materiales predefinidos del programa, junto a la aplicación de estos en los elementos 3D.

El Gestor o editor de materiales

El gestor de materiales es el comando que nos permitirá crear, editar y administrar los diferentes materiales de AutoCAD, ya sea creando nuevos o modificando algunos de los ya existentes en la biblioteca de AutoCAD. Podremos invocar este gestor escribiendo materials en la barra de comandos. Este también aparece en el menú Visualize (Render) estando en el espacio de trabajo 3D Modeling.

Al invocar el comando o al seleccionar Material Browser, nos aparece el siguiente panel:

Este panel es el llamado Gestor de Materiales de AutoCAD, donde podremos tanto asignar materiales predefinidos como crear  y/o editar materiales propios. Si analizamos el gestor, encontraremos tres zonas que debemos conocer bien para facilitar nuestra labor de asignación de materiales. Estas son:

1) Área superior (en verde): en esta zona tendremos acceso a los materiales del usuario, es decir, desde esta podremos crear materiales mediante el Material Global (o también llamado material base), o también podremos ver los materiales que hemos aplicado a nuestros objetos.

2) Área izquierda (en amarillo): en esta zona del editor encontraremos dos tipos de bibliotecas: la primera es “Autodesk Library” en la que podremos ver y aplicar una serie de materiales ya predefinidos por AutoCAD, y una segunda llamada Favorites (antiguamente My Materials) en la que podremos gestionar los materiales que hemos aplicado en nuestros objetos 3D o bien los que vayamos creando. En versiones más antiguas de AutoCAD, My Materials incorpora una categoría predeterminada llamada Miscellaneous (misceláneos).

3) Área derecha (en naranjo): en esta zona veremos la previsualización de cada uno de los materiales mostrando parámetros de estos como nombre, color o la textura. Por defecto, las vistas previas se muestran a partir de imágenes ya renderizadas.

Los materiales disponibles en AutoCAD

Para aplicar cualquier material a un objeto 3D, lo primero que debemos hacer es ir al área izquierda del editor de materiales y una vez allí, clickear en la carpeta Autodesk Library. Allí se nos mostrarán las diferentes categorías de los materiales predefinidos por AutoCAD mediante carpetas ordenadas y categorizadas, en algunos casos junto a subcarpetas:

Materiales de Autodesk Library junto a todas sus categorías y subcarpetas.

Los tipos y categorías de materiales que tenemos a nuestra disposición en AutoCAD son los siguientes:

1) Ceramic (cerámicas):

– Porcelain (porcelana):

– Tile (tramado):

2) Concrete (concreto, hormigón):

– Cast-in-Place (colocación In-Situ):

3) Default:

En el caso de Default, estos materiales son la base para crear nuevos materiales pues vienen con parámetros ya predefinidos según el material que necesitemos crear.

4) Fabric (géneros y mallas):

– Leather (cuero):

5) Finish (terminaciones):

6) Floor o Flooring (pisos):

– Carpet (alfombra):

– Stone (piedra):

– Tile (tramado):

– Vinyl (vinilo):

– Wood (madera):

7) Glass (vidrio):

– Glazing (cristal):

8) Liquid (agua y líquidos):

9) Masonry (mampostería):

– Brick (ladrillos):

– CMU:

– Stone (piedra):

10) Metal (metales):

– Aluminium (aluminio):

– Fabricated (prefabricado):

– Steel (acero):

11) Metallic Paint (pintura metálica):

12) Mirror (espejo):

13) Miscellaneous (materiales misceláneos):

14) Paint (pintura):

15) Plastic (plástico):

16) Roofing (techumbre):

17) Siding (revestimientos toscos):

18) Sitework (terrenos y pavimentos):

19) Stone (piedra):

– Granite (granito):

– Marble (mármol):

20) Stucco (estuco):

21) Wall covering (papel mural):

22) Wall Paint (muro pintado):

– Glossy (brillante):

– Matte (opaco):

23) Wood (madera):

– Panels (paneles):

Como podemos apreciar, tenemos una enorme variedad de materiales disponibles en el programa lo que haría imposible probarlos uno a uno en este tutorial, sin embargo podremos elegir el o los materiales que mejor se ajusten a lo que necesitemos materializar en nuestro proyecto 3D.

Aplicando materiales en AutoCAD

Como sabemos, en el área derecha del editor veremos la previsualización de cada material según vayamos explorando las carpetas del área izquierda. Para aplicar un material en un objeto 3D bastará con seleccionarlo, luego presionar y mantener el botón primario del mouse en el ícono del material elegido para posteriormente arrastrarlo hacia el objeto.

Al hacerlo, el objeto quedará con el material asignado en lugar de su color original y a su vez notaremos que en el área superior o se usuario se agregará el material aplicado. Si aplicamos otro material al mismo objeto, este nuevo material pasará a reemplazar al anterior aunque en el área superior serán visibles ambos materiales.

Un aspecto importante a considerar es que se debe ir probando cada material en el o los objetos e ir ejecutando en la barra de comandos el comando RENDER para ver el resultado, tal como se aprecia en el siguiente ejemplo:

La idea de esto es conocer y visualizar los distintos efectos y propiedades que estos poseen en su representación final. Si apreciamos la zona del usuario del ejemplo, notaremos que hay más materiales que los que tenemos aplicados en los objetos ya que en este caso, se probaron algunos materiales encima de un mismo objeto y como ya sabemos, estos se agregan automáticamente a la zona del usuario:

También notaremos un par de iconos de opciones en la zona superior derecha de esta. El primer icono se llama Show/Hide Library Panel y nos permitirá mostrar u ocultar las zonas inferiores (biblioteca), dando paso sólo a la zona del usuario:

El segundo es un menú que nos permitirá ordenar nuestra lista de materiales según varios criterios, y se llama Change You View. Estos criterios de orden son los siguientes:

Document Materials (documento de materiales)

– Show All: muestra todos los materiales, tanto usados como no usados y es la opción por defecto.

– Show Applied: muestra sólo los materiales aplicados en los objetos.

– Show Selected: si seleccionamos los objetos en la viewport, esta opción muestra sólo los materiales de los objetos seleccionados.

– Show Unused: muestra los materiales que no están aplicados en los objetos.

– Purge All Unused: esta opción permite eliminar o purgar en la zona del usuario todos los materiales que no se han aplicado en los objetos, dejando sólo los materiales que están aplicados en estos y por ello, es la mejor opción cuando queramos definir los materiales definitivos ya que dejará sólo los que utilizaremos en los objetos.

View Type (tipo de vista)

– Thumbnail View: muestra los materiales mediante imágenes prerenderizadas, junto a su nombre respectivo.

– List View: muestra la lista de los materiales junto a su respectiva imagen.

– Text View: muestra la lista de los materiales pero sólo mediante texto.

Sort (ordenar)

– by Name: ordena los materiales alfabéticamente.

– by Type: ordena los materiales por tipo.

– by Material Color: ordena los materiales por color del material.

– by Category: ordena los materiales por categoría según Autodesk Library.

Thumbnail Size (tamaño de la imagen)

En esta opción podremos definir el tamaño en píxeles de la imagen prerenderizada de los materiales. Los tamaños de los que disponemos son los siguientes:

16 x 16

24 x 24

32 x 32

64 x 64

El menú Change You View también está disponible en la zona superior derecha del gestor de materiales (donde vemos las muestras de estos) y las opciones son exactsamente las mismas, a excepción de Purge All Unused que no está disponible en esta zona.

Una cosa muy importante que debemos tener en cuenta es que si agregamos el mismo material a un par de objetos, debemos hacerlo siempre desde la zona de usuario (tomando el material que se ha asignado a esta zona previamente) ya que si lo hacemos desde el área donde están las previsualizaciones (zona derecha), el material se duplicará innecesariamente. Otro aspecto importante a considerar es que cuando asignamos materiales a la zona del usuario estos pasarán a ser editables, es decir, podremos cambiar sus parámetros base para generar nuevos materiales.

Finalmente, cabe destacar que podemos asignar un material a un o más caras del objeto simplemente seleccionando el material, luego presionando y manteniendo la tecla CTRL para finalmente arrastrarlo hacia esa cara, tal como se aprecia en el siguiente ejemplo:

Aplicando un material en la cara de un objeto 3D, arrastrando el material y presionando y manteniendo la tecla CTRL. También se muestra el render del objeto.

Edición básica de materiales

Si estamos en la zona de usuario y seleccionamos cualquier material a excepción de Global notaremos que nos aparece el icono de un lápiz, lo que significa que podremos editar el material simplemente haciendo click en este:

Si lo realizamos, accederemos al panel de edición de materiales o Materials Editor, donde veremos los parámetros y podrmeos editar o modificar las propiedades generales del material en concreto como imagen, color, relieve, etc.

Por ejemplo, si estamos en el panel de edición de un material con una textura o imagen y hacemos click en el cuadro donde esta está cargada, accederemos al panel de edición de la imagen misma, llamado Texture Editor:

En este cuadro puntual vemos atributos como Brightness, que al desplazar la barra controlará el ajuste de brillo de la imagen haciéndo esta más clara u opaca. Mientras menos Brillo es más opaco y visceversa.

Otro parámetro importante es Source o fuente de la imagen, ya que si hacemos click en el nombre de la imagen (en azul) podremos acceder al menú para seleccionar cualquier otra y cambiarla:

Cambiando la imagen del material mediante la opción Source.

Y el tercer parámetro más importante de este editor es Invert Image (invertir imagen), el cual invierte las áreas oscuras y claras de la imagen:

El resto de los parámetros del editor de texturas (Transforms, Position, Scale y Repeat) están basados en el material Global y por ello, son tratados con mayor profundidad en la segunda parte de este tutorial.

Otra forma de editar el material es simplemente seleccionándolo mediante click y luego realizando click con el botón derecho del mouse ya que accederemos a un menú de edición más completo:

Además de la opción Edit, encontraremos otras funciones las cuales son:

– Select Objects Applied To: selecciona en la Viewport los objetos en que tengamos asignado el material. Por defecto, no funciona en el material Global.
– Duplicate: duplica (copia) el material. Esta copia puede ser editable.
– Rename: cambia el nombre a nuestro material, aunque en el material Global por defecto está desactivado.
– Delete: permite borrar el material, aunque en el material Global por defecto está desactivado.
– Add to: permite añadir el material a nuestros favoritos (Favorites), Active Tool Palette o alguna carpeta personalizada.
– Purge All Unused: purga en el panel del usuario todos los materiales que no estemos usando en nuestros objetos.

Si creamos materiales nuevos o queremos mantenerlos en una biblioteca de materiales personalizada, podremos agregarlos a la biblioteca Favorites (My Materials) o también a una biblioteca que podremos crear y definir de forma personalizada mediante la opción Add To.

Otra forma de crear y/o editar materiales es presionando el menú create material de la parte inferior izquierda del gestor de materiales (señalizado en verde en la imagen siguiente), así se nos desplegará el tipo de material que queremos crear y si elegimos alguno de ellos, se nos creará un material con los parámetros ya definidos según lo que hayamos elegido:

Tip: estos materiales también los encontraremos en la categoría Default de los materiales de AutoCAD.

Ahora bien, si seleccionamos la opción New Generic Material, podremos crear un material genérico el cual es una copia de Material Global, el cual podremos personalizar a nuestro gusto. Este nuevo material se llamará por defecto “Default Generic”.

En el ejemplo se ha creado un material genérico mediante la opción New Generic Material.

Material Global y los parámetros generales para la creación de un material desde cero, son tratados con mayor profundidad en la segunda parte de este tutorial.

Creando bibliotecas y categorías personalizadas

En la zona izquierda del gestor de materiales, además de la Biblioteca de Materiales o Autodesk Library, encontraremos una carpeta llamada Favorites (My Materials en versiones antiguas). Esta carpeta nos permitirá agregar nuestros materiales propios o predefinidos que hayamos aplicado a nuestra zona de usuario, mediante bibliotecas (Library) y categorías personalizadas (Category). De estos podemos decir lo siguiente:

– Las Bibliotecas nos muestran todos los materiales que tenemos en los objetos 3D de nuestro archivo.

– Las Categorías nos ayudan a ordenar los materiales de nuestra biblioteca mediante grupos específicos (por ejemplo, podríamos crear una categoría llamada “concreto” y colocar allí todos los materiales que se asemejen a este).

Para crear una biblioteca personalizada, debemos ir a la zona inferior izquierda del gestor de materiales para posteriormente seleccionar la primera carpeta (indicada en verde en la imagen siguiente) y hacer click con el mouse, con esto accederemos al siguiente menú:

La opción Create New Library nos permitirá crear la biblioteca personalizada. Luego de elegir la opción, se nos indicará el nombre y la ruta donde se guardará ya que este es un archivo de extensión .adsklib, el cual podrá ser trasladado o cargado en otros archivos:

Creando la biblioteca personalizada “materiales” mediante la opción Create New Library.

Además de Create New Library, tenemos las siguientes opciones en el menú:

– Open Existing Library: abre un archivo de Biblioteca personalizada (.adsklib) ya existente.
– Remove Library: borra la Biblioteca personalizada. Por defecto, Favorites no puede ser borrado.
– Create Category: crea una categoría personalizada en nuestra biblioteca o dentro de Favorites.
– Delete Category: borra la categoría personalizada (aparece al realizar la operación sobre una categoría), haya o no materiales asignados en ella.
– Rename: renombra la Biblioteca. Por defecto, Favoritesno puede ser renombrado.

Todas las opciones de creación y edición de Bibliotecas y categorías también están disponibles en las carpetas de las bibliotecas personalizadas que hemos creado y en Favorites, si realizamos click con el botón derecho del mouse encima de estas:

Por defecto, la carpeta Autodesk Library no puede ser editada de ninguna forma, y en el caso de Favorites esta no puede ser renombrada.

La opción Create Category nos permitirá crear categorías personalizadas para nuestros materiales las cuales irán dentro de nuestras bibliotecas personalizadas o en Favorites. Además de Create Category, tenemos las siguientes opciones en el menú:

– Rename: cambia el nombre de la Categoría o Biblioteca.
– Locate Library: localiza la Biblioteca.
– Remove Library: borra la Biblioteca.
– Delete Category: borra la categoría (aparece al realizar la operación sobre una categoría), haya o no materiales asignados en ella.
– Refresh Library: actualiza la Biblioteca.
– Release Library: publica la Biblioteca, terminando la edición.

Ahora todo es cuestión de crear nuestras categorías y agregar los materiales arrastrándolos hacia estas, tal como se aprecia en la siguiente imagen:

Otra forma en que se pueden agregar a nuestras categorías personalizadas es simplemente seleccionando el material y mediante doble click con el mouse en este, elegir la opción Add To para finalmente escoger la carpeta a la que lo queramos agregar:

En el ejemplo siguiente se ha creado la biblioteca llamada “materiales” y también tres categorías distintas donde se han asignado los diferentes materiales aplicados a una composición de ejemplo, y el orden de cada categoría en particular:

Si queremos ver el resultado de la representación de nuestros materiales aplicados, podemos escribir render en la barra de comandos y luego presionar enter para ver el resultado. Otra forma de realizar render es ir a la ventana Visualize (Render) y presionar el icono Render to Size.

Este tutorial continúa en la parte 2. Puede ir a la segunda parte haciendo click en este enlace.

3DSMAX Tutorial 06: Materiales y Mapeo

3dsmax_materialesUn material es la suma de un conjunto de parámetros y mapas (que pueden ser imágenes o vídeos) que pueden ser asignados a la superficie de un modelo 3D para describir como este refleja y/o absorbe a luz. La mezcla de todas estas propiedades nos permitirá emular los materiales del mundo real tales como mármol, ladrillo, plásticos, metales, etc. Un mapa en 3DSMAX es cualquier archivo de imagen que el programa soporte (jpg, gif, bmp, etc.) y también puede ser un archivo de video (ave, mov, etc.), una secuencia de imágenes o mapas de procedimiento (procedurales) generados por el programa los cuales se asignan a las propiedades de los materiales con el fin de aumentar el nivel de realismo de los mismos. Los materiales que contienen uno o más mapas se llaman materiales mapeados.

La diferencia entre un material y un mapa es que el primero es un conjunto de propiedades de la superficie del objeto, mientras que los mapas se utilizan para caracterizar estas propiedades, por lo que están subordinados a los primeros.

Para cargar la lista de materiales debemos presionar el botón get material. Este nos desplegará el cuadro de materiales, donde podremos reconocer la lista de materiales tipo, la lista de mapas generados por el programa así como también los materiales que tenemos aplicados en la escena y por último los slots del editor de materiales.

Además de los materiales predeterminados, podemos cargar los materiales que vienen con 3DSMAX. Para ello, presionaremos el ícono de la flecha hacia abajo y cargaremos la opción open material library.

Buscaremos ahora el archivo llamado 3dsmax.mat (suele estar en 3dsmaxXXXX >> Materiallibraries) y lo seleccionamos. Aparecerá cargada nuestra biblioteca de materiales. Además de este archivo, 3DSMAX cuenta con Aec Templates, mrArch_DesignTemplates y Nature, que son también bibliotecas de materiales. Podemos crear nuestra propia biblioteca mediante la opción New material Library y luego asignándole un nombre. Para llenar la biblioteca con nuestros materiales bastará arrastrarlos hacia ella.

Si queremos guardar la biblioteca de materiales nos colocamos en la persiana respectiva y con el botón secundario del mouse elegimos la opción save as:

Con esto guardaremos la biblioteca en extensión mat lo que implica que podremos cargarla cuando queramos y en cualquier otra escena, mediante la opción open material library.

Tipos de materiales

Cuando elegimos el cuadro de materiales nos aparecen 2 grupos definidos: Materials y Maps. Dentro del primer grupo nos aparece el subgrupo Standard, que es el que contiene los materiales tipo que nos da 3DSMAX y con los cuales podremos crear nuestros propios materiales, si cargamos los materiales tipo de 3dsmax (3dsmax.mat) y vemos cada uno de ellos nos daremos cuenta que están formados a partir del grupo Standard. Este grupo clasifica a los materiales en 4 grupos:

Material standard: es el que viene por defecto en el programa. Con este podemos crear nuevos materiales.

Material Raytrace: para crear reflexiones y refracciones realistas.

Material sombra/mate: sirve para proyectar sombras en imágenes.

Materiales de composición: el más numeroso de todos, sirve para componer o mezclar materiales entre sí.

Los materiales tipo son los siguientes:

Bend (Mezcla):

Este material combina dos materiales en una misma superficie. Mediante el parámetro Mix Amount podemos definir el porcentaje de mezcla entre el material 1 y 2. Además podemos utilizar un mapa de escala de grises como máscara para definir qué zonas corresponden a cada material y con qué intensidad se mezclan.

3dsmaxtut06_00f

Double sided (2 lados):

Nos permite definir 2 materiales, uno en la superficie externa y otra en la interna. También podemos controlar cómo se funden ambos materiales utilizando el parámetro Translucency.

3dsmaxtut06_00h

Top/Bottom (Superior/Inferior):

Permite asignar dos materiales diferentes a la parte superior e inferior de un objeto 3D, y se puede mezclar la unión entre ambos materiales mediante el parámetro blend. Con el botón swap, podemos cambiar el orden de los materiales.

3dsmaxtut06_00j

Multi/Sub-object (Multi/Subobjeto):

Uno de los materiales más importantes ya que nos permite asignar desde 2 hasta 1.000 materiales diferentes dentro de un único slot y asignarlos a diferentes caras de una geometría, basándose en el número ID de los polígonos de esta. Este material funciona en objetos de tipo editable poly o aquellas geometrías que puedan ser asignadas mediante la opción mesh select. Mediante el parámetro Set Number podemos asignar la cantidad de materiales que queremos utilizar.

3dsmaxtut06_00l

Debido a su importancia y uso, el material Multi Sub-Object es tratado con mayor profundidad en su tutorial respectivo.

Compuesto (Composite):

Se utiliza para fusionar hasta 10 materiales diferentes entre sí mediante el uso de porcentajes de mezcla, composición aditiva o sustractiva. Los materiales se van combinando sucesivamente desde arriba hacia abajo, y cada uno puede utilizar un método distinto para combinarse con el resto.

3dsmaxtut06_00n

Shellac (Teñir):

Mezcla dos materiales entre sí tiñendo uno sobre el otro. Los colores del material Shellac son sumados a los del material base logrando un material más claro y con características comunes a ambos.

3dsmaxtut06_00p

Matte/Shadow (Mate/Sombra):

Aplica un mapa de entorno a la superficie de un objeto para camuflarlo en la escena pero con la posibilidad que se vean en él las sombras y reflexiones que proyectan los demás objetos. Se utiliza para simular sombras y reflexiones en fondos reales y ocultar objetos sobre fondos y videos. El efecto sólo es visible en la representación (render). No funciona en objetos de forma elíptica.

3dsmaxtut06_00r

Raytrace (reflexión y traslucidez):

Este material soporta los mismos tipos de sombreado de superficie que el material standard, pero además nos permite crear reflexiones y refracciones muy precisas y personalizables. Nos permite generar efectos de niebla interna, densidad de color, traslucidez, fluorescencia y otros efectos especiales. Podemos cambiar los colores (o asignar mapas) de los parámetros para que Raytrace funcione en forma automática.

3dsmaxtut06_00t

Ink Paint (entintado):

Este material nos permite emular un dibujo animado mediante la aplicación de colores planos. Podemos controlar el color y el brillo especular así como los colores de la tinta. Mediante el parámetro Ink Width podemos definir el grosor de la línea del contorno del dibujo.

3dsmaxtut06_00v

Shell Material:

Nos permite elegir la visualización entre dos materiales, si es que queremos ver uno en el viewport y en el render o uno en el render y el otro en el viewport. En el Slot del material aparece el que se verá en el render.

3dsmaxtut06_00x

XRef Material (referencia externa):

Nos permite tomar un material desde un objeto 3D de otra escena y representarlo de forma correcta en nuestro objeto 3D.

3dsmaxtut06_00z

Architectural (Arquitectura):

Es un material optimizado para mapear modelos de Arquitectura, pues cuenta con una multitud de parámetros editables como por ejemplo luminancia, translucidez, transparencia y otros efectos especiales. Lo mejor de este material es que tenemos muchos materiales y efectos preconfigurados, como por ejemplo cerámicas (imagen derecha), agua o maderas.

3dsmaxtut06_00zb

Debido a su importancia y uso, el material Architectural (Arch & Design de Mental Ray) es tratado con mayor profundidad en su tutorial respectivo.

Advanced Lighting Override:

Funciona en conjunto con la radiosidad (radiosity), se utiliza para simular iluminación de tipo neón. Es importante que el material base esté autoiluminado y asignar una escala de luminancia alta (1000 a 2000) para lograr el efecto.

3dsmaxtut06_00zd

DirectX Shader:

Es un material utilizado sólo en la viewport, en el cual podremos ver directamente el shader que se rendereará en otra aplicación (por ejemplo, motores de juegos). Podemos cambiarlo en la persiana DirectX shader.

3dsmaxtut06_00zf

Morpher: este material funciona con el modificador Morpher. Este mezcla los materiales de los distintos canales (podemos tener hasta 99) del modificador para lograr transiciones suaves. Es utilizado preferentemente en animación.

Proyecciones de Mapeo Estándar

Coordenadas de mapeo UVW

Cuando creamos un objeto en 3D y le asignamos una textura se nos presenta el problema de las “coordenadas de mapeo” ya que la imagen o se distorsiona, o no se aplica en la dirección que uno espera, o en algunos casos no se ve correctamente. Pero ¿qué son exactamente las coordenadas de mapeo?

Una coordenada de mapeo especifica la forma en que se proyecta una textura 2D en una geometría 3D. Al igual que los objetos 3D que tienen coordenadas del espacio en X, Y, Z, las texturas también tienen sus propias coordenadas: U, V y W que son equivalentes a las coordenadas de los objetos 3D en X, Y, Z.

Ahora ¿para qué sirve una coordenada W (profundidad) en una textura 2D? Este tipo de coordenada sólo la tienen mapas procedurales “en 3D”, también llamadas “solid textures” o “3D textures”.

Si creamos cualquier tipo de objeto 3D y le aplicamos un mapa procedural 3D en el canal Diffusse (por ejemplo: Wood), al realizar un render podremos ver cómo el mapa se distribuye uniformemente a través de la geometría del objeto sin generar ningún tipo de costura (imagen de abajo).

3dsmaxtut06_01

La manera más simple de asignar coordenadas de mapeo a un objeto es mediante las proyecciones de mapeo estándar las cuales son: planar, cilindrical, spherical, box y face, que están disponibles dentro de las propiedades de un modificador llamado UVW Map. Además, cada una de estas proyecciones tiene un Gizmo (conjunto de ejes) bastante representativo que puede ser movido, rotado, escalado y animado. El problema de las proyecciones estándar es que si no se configura bien la textura, esta deja ver la costura o “seam”.

El modificador UVW MAP

Cuando 3DSMAX aplica un mapa 2D sobre una superficie de carácter plana, cilíndrica, esférica o cúbica, este reconoce la forma del objeto ya que está definida como un parámetro base. Sin embargo, no ocurre lo mismo cuando tenemos objetos de tipo orgánico o con mallas de tipo editable poly ya que el programa asume que sólo es un conjunto de caras en el espacio 3D por lo que no sabe cómo “envolverlo”. Para resolver en parte este problema, aplicamos el modificador llamado UVW Map.

El modificador UVW Map se puede aplicar cualquier tipo de objeto, tanto a una primitiva como a un objeto de tipo editable poly.

Lo primero que veremos al aplicar el modificador es la imagen de la derecha. Aquí podremos seleccionar en la opción Zapping uno de los tipos de mapeado standard que 3DSMAX reconoce como parámetros base. Los parámetros o proyecciones base son los siguientes:

Mapeo Planar (plano): Esta opción proyecta la textura a través de un único eje, ya sea X, Y o Z. Esta opción es bastante útil cuando deseamos mapear un objeto plano que no tiene profundidad como por ejemplo: la hoja de un libro, un póster o un cuadro.

3dsmaxtut06_02

Mapeo Cylindrical (cilíndrico): Proyecta el mapa en el objeto envolviéndolo como si este fuera un cilindro. En la imagen de abajo se muestra claramente como el mapeo cilíndrico se proyecta sobre un objeto más la opción cap (tapa) activada.

3dsmaxtut06_03

Mapeo Spherical (esférico): Proyecta el mapa en el objeto desde una esfera. La imagen se estira desde un polo a otro envolviendo el objeto, los dos lados de la imagen se encuentran en una línea que es la costura del mapa. Este tipo de mapeo es útil en objetos con forma esférica.

3dsmaxtut06_04

Mapeo Box (caja): Proyecta el mapa desde una caja. En este tipo de proyección hay en realidad seis mapas planares (uno por cada lado de la caja). Este tipo de mapeo es útil en objetos con forma de caja, si se utiliza en otros objetos se obtendrán resultados extraños.

3dsmaxtut06_05

Mapeo Face (cara): Este tipo de mapeo proyecta el mapa de forma plana en cada uno de los polígonos del objeto.

3dsmaxtut06_06

En el modificador UVWMAP encontraremos los valores para U, V y W. Si los modificamos, le indicaremos al programa cuánto repetiremos la textura en alguno de los lados. Esto es útil para definir, por ejemplo, paredes de ladrillo. En la imagen de abajo encontraremos una caja de 180 x 90 x 12 con una textura aplicada por defecto:

3dsmaxtut06_07

Sin embargo, si a esta le aplicamos el modificador UVW Map nos quedará como la imagen de abajo:

3dsmaxtut06_08

Esto se debe a que el modificador por defecto aplica la proyección de tipo Planar y por ende se texturiza sólo la cara superior del objeto 3D. Podemos cambiar el tipo de proyección a Box y volveremos a la textura original.

Podemos notar que la proyección puede alinearse en torno de cualquier eje (X, Y o Z) y que podremos definir los valores de U, V y W que equivaldrían a estas coordenadas. En la imagen de abajo por ejemplo, el valor de “U” es 4:

3dsmaxtut06_09

Y a la misma caja, esta vez, se ha modificado el valor de “V” a 4:

3dsmaxtut06_10

Viendo los ejemplos anteriores notamos que en U la textura se repite 4 veces en torno al largo (eje X), mientras que V lo hace en torno a la altura de la caja (eje Y).

Podemos utilizar estos valores para definir las dimensiones exactas o aproximadas de una textura en el objeto. Al lado de los valores de U, V y W encontraremos la opción flip. Si la activamos, invertiremos la textura en forma Vertical (U) u Horizontal (V).

3dsmaxtut06_11

Textura original

3dsmaxtut06_12

Textura volteada en forma Horizontal, aplicando flip en V.

3dsmaxtut06_13

Textura volteada en forma Vertical, aplicando flip en U.

Otra propiedad interesante de UVW Map es que podemos transformar la textura ya sea moviéndola, rotándola o escalándola mediante la opción Gizmo.

3dsmaxtut06_15

Al seleccionar este gizmo, podemos aplicar transformaciones como Move, Rotate y Scale sin problemas en la textura sin transformar el objeto 3D en el que esta se aplica.

También podemos modificar sus parámetros en Lenght, Width y Height.

Entre los parámetros más importantes del modificador UVW Map tenemos:

Alignment: nos permite alinear la proyección en X, y o Z.

Channels (canales): se utiliza cuando queremos aplicar muchos UVW Maps a una cara o al objeto. Si aplicamos un nuevo UVW map a un objeto siempre tendrá por defecto el canal 1, si lo aumentamos nos mostrará el mapeado del UVW de abajo. Podemos tener hasta 99 canales.

Fit (encajar): si lo activamos, la proyección encajará en el objeto.

Center (centrar): centra la textura con el centro de la cara.

Región Fit (encajar en región): con este parámetro podremos encajar el mapa en una región del objeto.

Reset: volveremos a la textura por defecto.

Display: muestra o no la costura o seam. Por defecto activa la opción Show No Seams (no mostrar costura). La costura se representa mediante una línea verde.

En caso que quisiéramos definir una textura diferente en cada cara del objeto, podemos ayudarnos con el modificador llamado Mesh selectMesh select nos permite seleccionar uno o más polígonos y asignarles un ID, luego de esto podemos aplicar un UVW Map a esa cara para mapearla. Debemos tomar en cuenta que si queremos realizar las 6 caras de una caja, debemos realizar este proceso 6 veces (uno por cada cara) y que todas las caras deben tener distinto ID, en el caso de a caja de la imagen de abajo este proceso se ha realizado 3 veces.

Otra cosa importante es trabajar con el material de tipo Multi/Sub-Object y definir 6 materiales (las 6 caras) y asignarles la textura a estos en el canal difusse.

3dsmaxtut06_16

Este es el fin del tutorial 06.

Bibliografía utilizada:

– Tutorial Propiedades de los materiales en 3DSMAX del profesor Sebastián Huenchual H., Carrera Animación Digital 3D, Instituto DGM.
– 3DSMAX User Guide reference.
– Manuales USERS 3DSMAX por Daniel Venditti. Ediciones MP, Buenos Aires, Argentina.

Publicidad
Otras webs del autor

TFCatalog.cl es un blog donde se revisan periódicamente figuras (juguetes) del universo Transformers, además de ser un catálogo personalizado de colección la cual está categorizada según línea.

http://www.tfcatalog.cl
Donar a MVBlog

Si le gusta esta web puede ayudar a mejorar su contenido, su calidad y a mantener activo este proyecto mediante su donación vía Paypal.

 
 

Publicidad
Suscríbase a MVBlog y reciba los últimos tutoriales, noticias y posts acerca de CAD, 3D y dibujo:
Gracias a FeedBurner
Reserve Hoteles

Si gusta de viajar, reserve alojamiento en booking.com y así ayuda a colaborar con este proyecto:
booking.com

Translate MVBlog to
Buscar en Google


Encuesta

El tema que más le interesa del blog es...

View Results

Loading ... Loading ...
Publicidad
Ultimos Apuntes
Ultimos AutoCAD
Ultimos Tutoriales 3D
Bibliografía (al azar)
Publicidad
Archivo de MVBlog
Tráfico del blog
  • 293474Total Visitas:
  • 275Visitas hoy:
  • 929Visitas ayer:
  • 8293Visitas semana:
  • 10330Visitas por mes:
  • 1,145Visitas por día:
  • 3Visitantes online:
  • 17/03/2018Inicio: