Tutoriales y apuntes recomendados

Tutorial 14: Inserción de referencias o XREF, aplicado en 3D

Como ya lo hicimos anteriormente en el tutorial correspondiente a AutoCAD 2D, definiremos como referencias externas o "XREFs" a archivos específicos que cumplen la función de servir como guía, calco o referencia para realizar dibujos complejos. Estos archivos pueden ser de imagen, del mismo software (DWG) o también de otros programas similares como Microstation. También explicamos el cómo se realizaban bloques o dibujos complejos utilizando esta técnica, pero en este nuevo tutorial llevaremos el concepto de XREF a la aplicación práctica en la gestión y modelado de proyectos tridimensionales. XREF nos servirá de sobremanera en proyectos 3D de carácter complejo ...

Leer más...

AutoCAD 2D Tutorial 06b, Cota Leader

Como sabemos, dibujar en AutoCAD tiene como fin llevar lo dibujado en la pantalla a la realidad mediante la construcción de una pieza, una máquina, un producto o un proyecto de Arquitectura. Para que eso sea posible, la teoría del dibujo técnico establece dos requisitos indispensables que deben cumplirse si se ha dibujado algo que ha de fabricarse en un taller (si es una pieza, máquina o un producto) o construirse en un terreno, si es que hablamos de una edificación: - Que las vistas del dibujo no permitan dudas respecto a su forma. - Que la descripción de su tamaño sea ...

Leer más...

Maquetería 04: Introducción y tipos de maquetas

Concepto de maquetería Definiremos como Maquetería al arte de fabricar maquetas. A partir de esto definiremos una "maqueta" como una representación tridimensional o 3D de un objeto o evento. La maqueta puede ser funcional o no y además puede representar eventos u objetos reales o ficticios: Maqueta de una escena ferroviaria, en escala H0 (1:87). En este tipo de maquetas los trenes y las señales ferroviarias funcionan gracias a un complejo sistema eléctrico. Maqueta de la X-Wing de Star Wars, en escala 1:29. Este tipo de maquetas poseen funciones como abrir la cabina, mover las alas o una base para exhibición. La maqueta generalmente se suele ...

Leer más...

Maquetería 06: Materiales para maquetería

Uno de los fines de la maquetería es la representación de los proyectos y/o elementos de la forma más realista posible. Por esto mismo es que los materiales que se utilicen deben emular de la mejor forma posible la materialidad, texturas o colores del proyecto original como por ejemplo el concreto, el vidrio o la madera. Los materiales utilizados para la construcción de maquetas son muy variados, y de hecho prácticamente cualquier material puede utilizarse para este fin. Sin embargo en el mercado encontraremos varios materiales especialmente creados para este arte. Los materiales principales utilizados son los siguientes: El Cartón El cartón es ...

Leer más...

Comandos AutoCAD Tutorial 03: helpers o ayudantes de dibujo

En AutoCAD ya hemos aprendido las unidades básicas de dibujo y las cuatro formas en que podemos realizar estos en el programa. Sin embargo, dibujar elementos y formas complejos es algo difícil ya que el espacio donde trabajamos es un plano de carácter “ilimitado” y por ello es difícil colocar límites claros para nuestro trabajo y además de eso, es difícil dibujar "a pulso" en el programa sin cometer errores. Por esto mismo, AutoCAD pone a nuestra disposición una serie de ayudantes para nuestros dibujos llamados Helpers, de modo de facilitar la ejecución de estos y por ende, ahorrar tiempo ...

Leer más...

Comandos AutoCAD Tutorial 04: referencia a objetos (OSNAPS)

Si bien en un tutorial anterior estudiamos el concepto de coordenadas X e Y en AutoCAD y que evidentemente el programa lo sigue utilizando como base para el dibujo 2D y 3D, estas fueron pensadas originalmente para equipos sin las capacidades de hoy en día, cuando las primeras versiones de AutoCAD sólo tenían textos y la famosa barra de comandos. En ese entonces los comandos e instrucciones se ejecutaban exclusivamente desde el teclado escribiendo el nombre del comando en la barra y luego presionando la tecla enter. Gracias al avance de la informática y por ende del programa mismo, hoy ...

Leer más...

Comandos AutoCAD Tutorial 12: comandos Move y Copy

En este tutorial veremos los diferentes comandos de transformaciones move y copy en AutoCAD los cuales, como sus nombres lo indican, nos permitirán desplazar y/o copiar uno o más objetos hacia cualquier posición del área de dibujo. Además veremos aplicaciones exclusivas del comando copy como Array, el cual nos permitirá no solo copiar una gran cantidad de elementos sino que también nos permite distribuirlos en torno a un elemento o distancia. El comando Move Un comando importantísimo en AutoCAD es el llamado mover o simplemente move. Move nos permitirá mover desde una posición a otra uno o más elementos del dibujo sean estos ...

Leer más...

Comandos AutoCAD Tutorial 15: el comando Array

En este nuevo tutorial veremos otro de los comandos más versátiles de AutoCAD, ya que se trata del comando llamado array o lo que es lo mismo, la copia de objetos mediante matrices o arreglos las cuales permiten distribuir copias en el espacio y pueden ser de tipo rectangular, polar o en referencia a un recorrido o también llamado path. En este artículo veremos los tres tipos de matriz que posee el comando array además de aplicaciones exclusivas (mediante ejemplos y archivos) de este comando, e información complementaria respecto a su uso en el dibujo 2D y en otro tipo de ...

Leer más...

AutoCAD 2D Tutorial 06: Acotación y estilos de cota

Como sabemos, dibujar en AutoCAD tiene como fin llevar lo dibujado de la pantalla a la realidad mediante la construcción de una pieza, una máquina, producto o un proyecto de Arquitectura. Para que eso sea posible, la teoría del dibujo técnico establece dos requisitos indispensables que deben cumplirse si se ha dibujado algo que ha de fabricarse en un taller (si es una pieza, máquina o un producto) o construirse en un terreno, si es que hablamos de una edificación: - Que las vistas del dibujo no permitan dudas respecto a su forma. - Que la descripción de su tamaño sea exacta. ...

Leer más...

AutoCAD 2D Tutorial 09: layout y diseño para impresión

El final de cualquier dibujo que realicemos en AutoCAD se refleja siempre en el dibujo impreso. Para los arquitectos, por ejemplo, AutoCAD es ideal para la elaboración de planos, auténtica materia prima para su trabajo en el desarrollo y supervisión de una construcción. Sin embargo, AutoCAD es además una excelente herramienta para el diseño, lo que implica que solamente nos concentraremos en realizar el dibujo sin preocupaciones, ya que no importa si los dibujos están o no dispuestos de manera adecuada para elaboración del soporte (plano) ya que para esto tenemos el layout, el cual nos permitirá configurar el dibujo ...

Leer más...

Dibujo Técnico: tipos de perspectivas

Acerca de las perspectivas Para la representación de objetos en el dibujo técnico se utilizan diversas proyecciones que se traducen en vistas de un objeto o proyecto, las cuales suelen ser los planos o vistas 3D que nos permiten la interpretación y construcción de este. El dibujo técnico consiste en esencia en representar de forma ortogonal varias vistas cuidadosamente escogidas, con las cuales es posible definir de forma precisa su forma, dimensiones y características. Además de las vistas tradicionales en 2D se utilizan proyecciones tridimensionales representadas en dos dimensiones llamadas perspectivas. Los cuatro tipos de perspectivas base son: Isométrica (ortogonal) Militar (oblicua) Caballera (oblicua) Cónica ...

Leer más...

Dibujo Técnico: convenciones sobre el dibujo de Arquitectura

Acerca del dibujo arquitectónico Como ya sabemos, la expresión gráfica que se utiliza en la Arquitectura está definida por un conjunto de especificaciones y normas y a la vez estas son parte de lo que conocemos como dibujo técnico. El ojo humano está diseñado para ver en 3 dimensiones: largo, alto y ancho. Sin embargo, estas sufren distorsión dependiendo de la distancia y la posición donde esté situada la persona respecto al objeto que se observa. Por lógica no podríamos construir ese objeto si lo dibujásemos “tal cual” lo vemos, ya que para ello fuera posible el objeto tendría que mantener su ...

Leer más...

Dibujo Técnico: tipos de línea, grosores y usos

Las líneas en Arquitectura y en Ingeniería Las líneas en arquitectura y en dibujo técnico cumplen un papel fundamental en la representación de nuestro proyecto, pues nos permiten definir las formas y las simbologías precisas para la correcta interpretación y posterior construcción de este. Sin los distintos tipos de línea nuestro dibujo se parecería más a un dibujo artístico y sin los grosores, nuestro dibujo pasaría a ser plano y no sería comprendido en su totalidad por el ejecutante o constructor. Las líneas se clasifican, según la NCh657, en los siguientes tipos y clases: Los tipos de líneas se usan según los ...

Leer más...

Dibujo Técnico: la escala y sus aplicaciones

La escala de los planos Como ya sabemos, si dibujamos un proyecto de arquitectura o un objeto grande es imposible que lo podamos hacer "a tamaño real" pues los formatos de papel son limitados a un ancho máximo de 1,2 mts, y además por razones prácticas (tamaño, peso, transporte y portabilidad) y de lectura es inviable. Plano en tamaño real de Vardehaugen. A pesar de ser un concepto muy interesante y bonito de apreciar, nos muestra el problema de "dibujar" un proyecto en su tamaño verdadero. Si por el contrario dibujamos un objeto muy pequeño en un papel tenemos un problema similar, ya ...

Leer más...

AutoCAD 3D Tutorial 02: Modelado 3D con primitivas (templo griego)

Uno de los principios básicos del modelado 3D es que todos los objetos que existen en la realidad y en la naturaleza nacen a partir de las llamadas "primitivas". Una primitiva se define como la geometría 3D o Poliedros básicos que pueden representarse tridimensionalmente mediante maquetas físicas o virtuales. Una de las características más importantes de estas es que si estas se modifican y/o editan ya sea mediante adición de estas, sustracción u otras acciones, van definiendo formas mucho más complejas. Por esto mismo y al igual que en cualquier otro programa 3D, en AutoCAD existen geometrías 3D llamadas “primitivas básicas” ...

Leer más...

AutoCAD 3D Tutorial 11: Consejos para un buen modelo 3D

En este tutorial se pretende dar consejos para realizar una buena gestión del modelado 3D en AutoCAD sin morir en el intento (o lo que es igual, sin que nuestro computador colapse y/o que nuestro archivo 3D pese demasiados megas). Estos consejos están basados fundamentalmente en mi experiencia como docente y sobre todo como modelador y animador 3D, y la idea es que estos les sean útiles para todos quienes quieran gestionar de forma eficiente sus modelos 3D en AutoCAD, o para quienes están comenzando a realizar sus primeros proyectos. Para el correcto modelado 3D es necesario seguir ciertas pautas o ...

Leer más...

AutoCAD 3D Tutorial 13: UCS, aplicación en modelado 3D

En esta ocasión y dado que hacía mucho tiempo que no se realizaba un tutorial sobre modelado en AutoCAD 3D, hoy nos corresponde mostrar uno de los comandos más eficientes y a la vez de los menos utilizados en el mundo del 3D de AutoCAD: se trata del comando llamado UCS o "User Coordinate System" ya que este es un sistema que nos permite modificar la posición del sistema standard de los ejes coordenados (X,Y,Z), para adaptarlo a cualquier lugar y/o posición para así facilitar el modelado y/o adición o sustraccion de elementos. En esta ocasión modelaremos la estructura en ...

Leer más...

Planimetría 01: Planta de Arquitectura

Definiremos la planta de Arquitectura como un CORTE de tipo HORIZONTAL del edificio o proyecto mediante un plano virtual el cual a su vez remueve la parte superior del edificio. Este corte se realiza usualmente a 1,20 o 1,40 mts y nos sirve para definir la estructura y los espacios principales del proyecto o edificación, en su largo y ancho. La planta es fundamental para comprender un proyecto pues las proporciones y dimensiones de esta son la base para la construcción de este. El concepto queda graficado en el siguiente ejemplo: En el caso de la planta en particular, al estar el plano ...

Leer más...

Planimetría 02: Corte de Arquitectura

Podemos definir un corte de Arquitectura como una sección o "corte" (valga la redundancia) mediante un plano VERTICAL de una edificación, edificio o proyecto de Arquitectura, y nos sirve para definir la relación de escala, proporción, alturas y los elementos estructurales del proyecto frente al contexto. A diferencia de la planta, el corte puede en teoría efectuarse en cualquier parte del proyecto y por ello deberá definirse mediante una señalización de este en la planta y además tener un "sentido", es decir, una dirección hacia donde queremos visualizar los elementos del corte mismo. Este concepto se puede graficar mediante el siguiente ...

Leer más...

Planimetría 03: Elevaciones en Arquitectura

Definiremos como elevaciones a las proyecciones ortogonales bidimensionales de TODAS las caras visibles de un proyecto, vivienda o edificio, utilizando la ya conocida proyección ortogonal de puntos. Estas caras se proyectan en planos imaginarios paralelos a la cara en cuestión y por ello, pueden ser representadas mediante planos bidimensionales. Las elevaciones también se denominan fachadas o alzados. El concepto de las elevaciones puede graficarse en el siguiente esquema: En el esquema notamos que el Norte geográfico está representado en el modelo ya que el nombre de cada cara dependerá de su ubicación geográfica respecto al terreno. El resultado de la proyección de cada ...

Leer más...

Planimetría 04: Representación en planos de muros, puertas y ventanas

En este apunte se muestran las representaciones de los principales objetos en una planta de Arquitectura, en base principalmente a la NCh745 para el caso de las puertas y ventanas. Cabe destacar que estas normas son válidas tanto para el dibujo a mano como mediante software. Representación de muros en planta y corte En el caso de la Arquitectura la representación de muros más utilizada es la línea de contorno sin relleno. Esta debe ir valorizada según la importancia jerárquica o estructural del elemento. Este tipo de representación es válido tanto en planta como en cortes de un proyecto. Los ejemplos de abajo ...

Leer más...

Planos de Seccion

AutoCAD 3D Tutorial 07: Planos de corte y sección

Plano de corteAsí como podemos manejar operaciones de sólidos y editar los diversos elementos 3D, AutoCAD también nos ofrece un comando muy interesante que nos permitirá seccionar nuestros elementos 3D como si fuese un corte 2D, además de poder representarlo en el espacio. También podremos realizar un corte 3D de nuestro proyecto ya que además de realizar cortes 2D, el comando puede crear una copia del proyecto 3D ya cortado.

Plano de corte (Section Plane)

Este plano permite cortar el sólido mediante el comando llamado sectionplane. Si lo definimos en un punto cualquiera del sólido y luego lo movemos (o rotamos) para traslaparlo podremos ver el corte de una figura 3D:

section_planesection_plane_addjog

En este ejemplo, antes de la aplicación de section plane se ha realizado una sustracción previa de una caja más pequeña definida previamente mediante el comando Shell.

Si vemos la barra de comandos encontraremos las siguientes opciones:

section_plane_options

Opciones de Section plane (ACAD 2013)

Opciones de Section plane (ACAD 2015-17)

Donde encontramos lo siguiente:

Draw Section (D): esta opción nos permite dibujar la sección de corte del sólido mediante dos o más puntos y además tendremos la ventaja de poder seleccionar hacia dónde se verá el corte. Lo primero que haremos será seleccionar la opción (mediante un click o escribiendo D en la barra de comandos y luego presionando enter), elegimos los puntos que irán dando forma a nuestro corte y luego presionamos enter para finalizar el trazado. Finalmente y de forma similar a offset elegiremos el lado donde será NO visible el corte mediante un click en uno de los sectores de la forma 3D (delante o detrás de ella). Si no realiza el corte de forma automática, podremos apreciar el resultado del corte debemos escribir livesection, presionar enter y luego elegir mediante un click el plano del corte ya realizado.

Ejemplo de modelo 3D con un corte realizado utilizando la opción draw section.

Orthographic (O): esta opción nos permite definir el corte mediante un plano el cual se proyectará de forma ortogonal según la cara del sólido que elijamos y lo cortará desde el centro de gravedad de este. Si al elegir esta opción vemos la barra de comandos, podremos elegir las 6 diferentes vistas:

section_plane_options_ortho

Estas vistas son las siguientes:

Top (T): proyecta el plano en la vista Top o planta (de arriba hacia abajo).

Front (F): proyecta el plano en la vista Front o frente.

Back (A): proyecta el plano en la vista Back o trasera.

Bottom (B): proyecta el plano en la vista Bottom o abajo (de abajo hacia arriba).

Left (L): proyecta el plano en la vista Left o izquierda.

Right (R): proyecta el plano en la vista Right o derecha.

EL corte se activará al elegir cualquiera de las opciones anteriores, y este plano podrá ser editado sin mayor problema (incluso se le pueden agregar secciones o Jogs).

Type (T), ACAD 2015 en adelante: esta opción nos permite definir el tipo de corte que se representará en la Viewport. Si al elegir esta opción vemos la barra de comandos tenemos las diferentes opciones disponibles:

Estas son las siguientes:

Plane: El plano de corte por defecto.

Slice: Sólo funciona con cortes rectos (sin Jogs) y nos permite delimitar el tamaño o campo que abarcará el corte según queramos. Podemos definir este moviendo la flecha triangular respectiva.

Corte con Slice aplicado, sin modificar (por defecto).

El mismo ejemplo anterior pero modificado (ensanchado).

Boundary: Nos muestra el área que abarca el corte. Puede ajustarse moviendo las flechas triangulares respectivas.

Volume: Nos muestra el volumen del corte. Puede ajustarse moviendo las flechas triangulares respectivas.

Live Section (activar o desactivar cortes en la viewport)

livesection

El comando Live Section nos permitirá activar o desactivar la opción de corte. Para ejecutarlo escribimos livesection, presionamos enter y luego elegiremos mediante un click el plano del corte para activar o desactivar la opción de corte.

Livesection desactivado (OFF).

Livesection activado (ON).

Es importante destacar que en el modelo 3D el plano de corte siempre será visible, haya sido activado o no la opción live section.

Add jog (agregar desplazamiento)

addjog

El comando Add Jog es una muy buena opción ya que nos permitirá agregar un desplazamiento o “quiebre” al corte. Para ejecutarlo escribimos sectionplanejog, presionamos enter y luego elegiremos mediante un click el plano del corte. Ahora elegimos un punto cualquiera de la línea cental del plano desde donde se iniciará el desplazamiento (podemos ayudarnos con nearest) y finalmente clickeamos para finalizar el comando y ver el resultado:

Ejemplo de modelo 3D con Addjog agregado.

Lo mejor de section plane además del simple hecho de cortar toda la forma 3D es sin duda el que podemos editar todas las líneas de corte simplemente moviendo las flechas azules y automáticamente se modificará el corte 3D, al igual que podremos modificar (mover) los puntos azules para cambiar el ángulo de las secciones. Los elementos de los que disponemos para la edición son los siguientes:

Cuadrados laterales: nos permiten mover o manipular los planos de corte para definir cortes en diagonal, y se encuentran en los extremos de cada plano de corte.

Corte en diagonal tomando un cuadro lateral.

flecha triangular: nos permiten mover o manipular los planos de corte en forma perpendicular (respecto a los planos X o Y), y se encuentran en la mitad de cada plano de corte. Si estas se encuentran arriba o abajo del plano, nos definirán la “altura” de este.

Corte modificado en su largo/ancho tomando una flecha triangular.

Corte modificado tomando una flecha triangular, pero esta vez redefiniendo la altura del plano.

flecha de sentido: al presionarla podremos cambiar el sentido del corte completo. Esta flecha aparece en una posición específica de todo el corte, normalmente en el lado derecho.

Sentido completo del corte modificado presionando una flecha de sentido.

flecha de Type: al presionarla podremos elegir el tipo de representación que queremos ver en la Viewport del corte y que ya vimos en la opción Type: Plane (plano), Slice (corte), Boundary (área) y Volume (volumen).

Una de las cosas importantes a mencionar en el caso de Section plane es que a pesar que el plano de corte es limitado en medidas, el corte realizado por este afectará por igual a todos los elementos 3D lo que se modelen entre este plano y el corte original ya que este se proyectará hacia el infinito.

En el ejemplo se dibuja una caja que atraviesa el plano de corte. En la segunda imagen notamos que la caja es afectada por el corte a pesar que el plano no la toca.

Ahora bien, si el elemento 3D se dibuja dentro del área donde se realiza el corte, este “desaparecerá” hasta que desactivemos livesection lo cual hará visible todo el modelo 3D y el elemento desaparecido.

En el ejemplo se dibuja una caja dentro de la zona de corte y en la segunda imagen esta desaparece. En la tercera imagen notamos que la caja vuelve a aparecer al apagar livesection.

Generate Section (generar sección)

generatesection

Este comando es muy interesante pues nos permitirá convertir nuestros cortes a representaciones 2D y 3D respectivamente. Para definirlo debemos seleccionar el ícono respectivo o en la barra de comandos escribimos sectionplanetoblock, si lo hacemos correctamente nos aparece el cuadro siguiente:

section_plane_generate_section_options

Presionaremos el ícono de Select section plane y luego clickearemos en el plano de corte para definirlo. Volveremos al cuadro y en este podremos elegir si queremos una representación 2D o 3D y además podremos aumentar las opciones de la conversión mediante la flecha de la izquierda. Las opciones que encontramos al expandir el cuadro son:

2D/3D: podremos elegir entre representación 2D (2D Section/Elevation) o 3D (3D Section).

Source Geometry: nos permite definir si queremos incluir todos los objetos en la representación (Include All Objects) o elegir los objetos que queramos (Select Objects to Include).

Destination: por defecto la representación de insertará como un bloque en nuestro espacio de trabajo. En esta opción podremos elegir:

– Si queremos que el elemento se inserte como un bloque nuevo (Insert as new block).

– Reemplazar un bloque existente, el cual podremos seleccionar (Replace existing block).

– Si queremos que la representación se exporte como un nuevo archivo (Export to a file). En este caso debemos dar una ruta de destino y un nombre de archivo para el nuevo archivo, el cual será DWG.

Si presionamos el botón Section Settings accederemos al menú de las propiedades de este donde podremos definir diferentes atributos del corte el cual puede ser en 2D o en 3D. En el caso de 2D Section, el menú es el siguiente:

Donde podremos distinguir los siguientes elementos del corte:

Intersection Boundary: muestra los elementos que se cortan primero o los más cercanos afectos al corte, como los contornos de muros y otros. Aquí podremos definir por ejemplo, el color, capa (layer), grosor de línea, escala de línea y tipo de línea de los elementos cortados además de mostrar o no las líneas de división.

Intersection Fill: podemos definir atributos y en este caso también el hatch para el “relleno” del corte mismo (por defecto es de color gris sólido). Aquí podremos definir por ejemplo si queremos mostrar el relleno o no (Show=yes/no) el color, capa (layer), grosor de línea de hatch, escala de hatch, diseño de este y tipo de línea del hatch.

Background lines: en esta opción podremos editar las atribuciones de las líneas de fondo de nuestro corte (las que se ven atrás).  Aquí podremos definir por ejemplo si queremos que se muesteren o no (Show=yes/no), el color, capa (layer), grosor de línea, escala de línea y tipo de línea de los elementos cortados además de mostrar o no las líneas ocultas (hidden line).

Cut-away Lines: en esta opción podremos definir las líneas segmentadas que definen el corte mismo además de la proyección general de la elevación respecto de este. Podremos definir por ejemplo si queremos que se muestren o no (Show=yes/no), si queremos ver o no las líneas ocultas (hidden line), el color, capa (layer), grosor de línea, escala de línea y tipo de línea de los elementos proyectados.

Para que este concepto quede más claro podemos ver el siguiente ejemplo:

Corte 2D realizado mediante la opción cut-away lines. En este caso se muestran todas las líneas de corte segmentadas además de la proyección general de la elevación respecto del corte realizado (en gris). 

Curve Tangency Lines: en esta opción podremos editar las curvas de tangencia de nuestro corte. Estas últimas aparecen al tener elementos curvos vistos de fondo, como por ejemplo cuando cortamos una tina podremos ver la redondez del agujero mediante las curvas de tangencia.

En este ejemplo de modelo 3D vemos la aplicación de Curve Tangency Lines en el corte 2D, donde se definen las curvas del fondo de la piscina y las manillas de puertas mediante este tipo de líneas.

Podremos definir los atributos de forma independiente para los elementos 2D y 3D. Una vez que terminemos de definir los atributos, podemos aplicarlos a todas las secciones del corte si marcamos la opción apply settings to all sections.

En el caso de nuestro ejemplo elegimos la opción 2D Section/Elevation, clickeamos en la opción create y el programa nos pedirá un punto donde colocar el corte. Cuando lo definamos mediante un click, el programa nos pedirá el factor de escala en X. Elegimos el valor 1 y presionamos enter, luego nos pedirá el factor de escala en Y y le damos el mismo valor. Finalmente el programa nos pedirá el ángulo de rotación, asignamos el valor 0 y finalizamos con enter. La representación 2D y/o 3D se habrá creado en el plano XY.

En el ejemplo se ven los cortes 2D y 3D, insertados mediante bloques utilizando el comando sectionplanetoblock.

Scale factor de sectionplanetoblock escalará en X e Y según los valores que asignemos. Por ejemplo, si queremos que el corte 3D sea el doble de grande colocaremos el valor 2 en X e Y, y si queremos que el corte sea a la mitad del tamaño real colocaremos el valor 0.5 en ambos. Demás está decir que si queremos dejar el tamaño real del corte o elevación, debemos dejarlos en 1 puesto que este valor corresponde al tamaño verdadero del corte. Y si queremos que el bloque se deforme bastará colocar valores diferentes en X e Y. Esta opción funciona para bloques 2D y 3D respectivamente.

En el ejemplo vemos cortes 2D insertados en tres diferentes escalas. De arriba hacia abajo y de izquierda a derecha: X e Y=5, X=3 e Y=1, X e Y=0.5 respectivamente. En el corte de X=3 e Y=1 notamos como el dibujo se deforma debido a la diferencia de escala entre ambos ejes.

En el ejemplo vemos cortes 3D insertados en tres diferentes escalas. De arriba hacia abajo y de izquierda a derecha: X e Y=5, X=1 e Y=3, X e Y=0.5 respectivamente. En el corte de X=1 e Y=3 notamos como el modelo se deforma debido a la diferencia de escala entre ambos ejes.

Si vemos la barra de comandos, tendremos las mismas opciones que las vistas arriba:

section_plane_generate_section_options_insertion

Donde tenemos lo siguiente:

Basepoint (B): podemos establecer un punto de base para colocar el bloque.
Scale (S): en 3D podremos definir el factor de escala para todo el objeto.
X: podremos definir el factor de escala en X para asignar una escala no uniforme.
Y: podremos definir el factor de escala en Y para asignar una escala no uniforme.
Z: podremos definir el factor de escala en Z para asignar una escala no uniforme.
Rotate (R): podremos establecer el ángulo de rotación para la inserción del bloque.

En el caso que insertemos elementos o bloques 3D, las opciones de configuración serán las mismas que en 2D pero con la diferencia que no aparecerá la opción Curve Tangency Lines.

Utilizando las opciones de configuración de Section settings podremos editar los cortes 2D y 3D a nuestro gusto, tal como se puede apreciar en este ejemplo:

En el ejemplo se han cambiado algunos atributos y tipos de línea en la configuración 2D y 3D de Section settings, y el resultado final se muestra en ambos tipos de bloques.

Flatshot (vista de prespectiva 2D)

flatshot

El comando flatshot nos permitirá crear en 2D la representación ortogonal y/o cónica del objeto completo según la vista en la que estemos. Para ejecutarlo escribimos flatshot, presionamos enter y luego nos aparecerá el cuadro siguiente:

Donde tenemos las siguientes opciones:

Destination: por defecto la representación de insertará como un bloque en nuestro espacio de trabajo. En esta opción podremos elegir:

– Si queremos que el elemento se inserte como un bloque nuevo (Insert as new block).

– Reemplazar un bloque existente, el cual podremos seleccionar (Replace existing block).

– Si queremos que la representación se exporte como un nuevo archivo (Export to a file). En este caso debemos dar una ruta de destino y un nombre de archivo para el nuevo archivo, el cual será DWG.

Foreground lines: corresponde a las líneas principales de la representación 2D. Podremos elegir el color y el tipo de línea.

Obscured lines: corresponde a las líneas ocultas de la representación 2D. Podremos elegir el color, el tipo de línea y además si queremos mostrarlas activando la casilla Show.

Una vez que configuremos los parámetros damos click en create y podremos colocar la representación 2D de la misma forma como lo hacemos con generate section, ya que posee las mismas opciones de inserción.

En este ejemplo el modelo 3D está en planta, y a su lado distintas representaciones 2D mediante Flatshot en las cuales se ha mdificado el color de línea. Se destaca la del lado izquierdo en que son visibles sus líneas ocultas u Obscured lines.

Una cosa interesante de flatshot es que puede funcionar en algunos tipos de cámaras y si bien funciona en vistas de “cámara”, no siempre es así puesto que en algunas vistas internas Flatshot no trabajará bien o nos dará una proyección 2D deformada.

En el ejemplo vemos una representación 2D mediante Flatshot aplicado a una vista de cámara.

Este es el fin de este tutorial.

Publicidad
Otras webs del autor

TFCatalog.cl es un blog donde se revisan periódicamente figuras (juguetes) del universo Transformers, además de ser un catálogo personalizado de colección la cual está categorizada según línea.

http://www.tfcatalog.cl
Donar a MVBlog

Si le gusta esta web puede ayudar a mejorar su contenido, su calidad y a mantener activo este proyecto mediante su donación vía Paypal.

 
 

Publicidad
Suscríbase a MVBlog y reciba los últimos tutoriales, noticias y posts acerca de CAD, 3D y dibujo:
Gracias a FeedBurner
Reserve Hoteles

Si gusta de viajar, reserve alojamiento en booking.com y así ayuda a colaborar con este proyecto:
booking.com

Translate MVBlog to
Buscar en Google


Encuesta

El tema que más le interesa del blog es...

View Results

Loading ... Loading ...
Publicidad
Ultimos Apuntes
Ultimos AutoCAD
Ultimos Tutoriales 3D
Bibliografía (al azar)
Publicidad
Archivo de MVBlog
Tráfico del blog
  • 297691Total Visitas:
  • 376Visitas hoy:
  • 1478Visitas ayer:
  • 8550Visitas semana:
  • 14547Visitas por mes:
  • 1,168Visitas por día:
  • 2Visitantes online:
  • 17/03/2018Inicio: