AutoCAD 2D Tutorial 13: textos en AutoCAD parte 1, Single Line y estilos de texto

En este nuevo tutorial de AutoCAD veremos una materia que extrañamente no se había publicado anteriormente en el blog, pero que resulta fundamental para el correcto dibujo de planimetrías en Arquitectura: se trata de los textos en AutoCAD, los cuales nos permitirán definir los diferentes componentes escritos que forman un plano ya sea símbolos y valores de ejes, nombres de recintos, nombres de planos y otros textos complementarios al proyecto que dibujemos. Debido a su extensión, en esta primera parte del tutorial veremos los comandos asociados a los textos simples o también llamados Single Line. También los estilos de creación y modificación para los textos en sí, y las relaciones de los textos con otras funciones complementarias como por ejemplo, las cotas.

Definición de Textos en AutocAD

En AutoCAD disponemos de dos tipos de texto base los cuales son los siguientes:

1) El Single Line o Text.

2) El Multiline Text o Mtext.

Single Line es el texto antiguo de AutoCAD y por ello es el más limitado en cuanto a configuración, pero tiene la ventaja de trabajar mediante los estilos de texto ya que los toma como base para definirlos en el área de trabajo. Multiline en cambio, es la versión más moderna de los textos y por ello dispone de funciones parecidas a cualquier editor de texto como Word o similar, y al igual que en el caso de single Line también toma los estilos de texto como base. Ambas funciones de texto las podemos encontrar en la persiana principal (Home), en el grupo llamado Annotation:

Si hacemos click en la flecha que está debajo de la letra “A” de la opción Text, podremos acceder a ambos tipos de texto:

En el caso del texto de tipo Multiline, este se encuentra por defecto ya que es la versión moderna pero también podremos acceder al comando antiguo mediante Single Line y si bien este último es más limitado en cuanto a opciones, tiene la ventaja de ser relativamente simple de configurar y además trabaja directamente con los Estilos de texto. En este tutorial nos referiremos específicamente a single Line y sus funciones mientras que en una segunda parte haremos lo propio con Multiline Text.

Texto Single Line

El texto simple o de una sola línea (Single Line) es la versión antigua del programa y por ello funcionará exclusivamente mediante el comando TEXT y luego enter o también presionando el icono de Single Line. En este caso, si invocamos el comando para colocar un texto nos aparecerá lo siguiente en la barra de comandos:

Como notamos en la imagen, el programa nos pedirá el punto de inserción o de inicio en el cual comenzará a escribirse nuestro texto. Si hacemos click para definir el punto, el programa nos pedirá especificar la “altura” del texto la cual por defecto es de 2.5, tal como se muestra en la imagen siguiente:

Podemos dejar esa altura o especificar alguna otra para definirla y por ende, especificar el tamaño que tendrá el texto en pantalla. En este caso definiremos la altura con el valor 10 y luego presionamos enter, y luego iremos a la siguiente pantalla:

Aquí se nos pedirá el ángulo en el que rotará nuestro texto. Esta función es bastante interesante puesto que el texto Multiline no la tiene, y consiste en girar el texto respecto a algún ángulo que le definamos. En este caso dejaremos el valor por defecto 0 ya que este nos indica que el texto se escribirá de forma horizontal. Presionamos enter y luego llegamos al final del comando:

En esta fase podremos escribir el texto que queramos y con ello definiremos el contenido de este. Es importante destacar que si presionamos enter NO saldremos del comando sino que en este caso nos saltaremos a la siguiente línea de nuestro texto y por ello podremos seguir escribiendo (como en Word). Si no escribimos nada y presionamos enter, el comando se cancelará y quedará el último texto que escribimos.

Otra forma de salir del modo texto y por ende cancelar el comando es realizar un click en el área de trabajo fuera del área del texto. Si lo hacemos correctamente, el texto quedará definido en su posición inicial pero a la vez insertaremos otra área para comenzar a escribir otro texto, tal como se aprecia en la imagen siguiente:

En este caso podremos escribir el texto o simplemente presionar ESC para salir del modo texto y cancelar de manera definitiva el comando.

Ejemplo de definición de dos textos mediante el comando TEXT. En este caso, se ha escrito la primera palabra y luego se ha clickeado fuera para definir el segundo texto. Posteriormente, se vuelve a hacer click fuera para finalmente presionar ESC.

Si escribimos otro texto y luego repetimos el proceso para cancelar, notaremos que los textos se definen de forma precisa pero serán independientes uno del otro, tal como se aprecia en la imagen:

Si queremos cambiar el texto que introducimos al principio, nos bastará hacer doble click en el texto a editar o mediante el comanto TEXTEDIT (TEXTE). Si lo hacemos por esta última vía, primeramente invocamos el comando y luego seleccionamos el texto que queramos editar:

Editando el contenido del primer texto mediante el comando TEXTEDIT.

Luego de la edición, hacemos click fuera del área del texto y luego presionamos ESC para cancelar. Una curiosidad de TEXTEDIT es que si presionamos enter en medio de la edición, no se cancelará el comando ni saltaremos a la siguiente línea sino que seguiremos dentro del comando y tendremos que nuevamente seleccionar el texto para seguir editándolo. Otro aspecto a destacar de este texto es que si bien al principio podremos escribir saltándonos varias lineas mediante enter, al salir del comando o cancelarlo los textos serán líneas independientes al ser seleccionados o editados (de allí su nombre “Single Line”), tal como se aprecia en la secuencia siguiente:

Podemos aprovechar las funciones de altura o de rotación que nos da este tipo de texto para crear varios efectos complementarios a nuestros textos, tal como se aprecia en la imagen siguiente:

En el ejemplo se han creado cuatro textos mediante TEXT utilizando las siguientes configuraciones: altura 20 y ángulo 0, altura 15 y ángulo 30, altura 10 y ángulo 45 y finalmente altura 5 y ángulo 90.

Si bien el texto Single Line es relativamente fácil de configurar y de definir, notaremos que sus funciones son bastante limitadas y que por defecto el texto que podremos definir sólo tiene un tipo de fuente la cual es Arial (o TXT en versiones muy antiguas de AutoCAD). Esto ocurre porque el texto Single Line se rige necesariamente por una función llamada Estilo de Texto, la cual funciona de manera similar a los estilos de cotas y a los layers ya que mediante estos definiremos atributos específicos del texto como por ejemplo su tipo, tamaño, si este es negrita, cursiva o tiene efectos más específicos como anchura o ángulo oblicuo. La ventaja de los estilos de texto es que podremos crear tantos atributos de texto específicos para cada parte de nuestro dibujo como sea necesario, como por ejemplo: un estilo para nuestros nombres de recintos, otro para los ejes de nuestro plano, otro para las cotas y así sucesivamente. Por defecto, el estilo de texto que viene por defecto es el llamado estilo Standard el cual es similar al layer “0” ya que este no puede ser borrado, puesto que es en este estilo en el cual se aplican nuestros textos al definirlos mediante Single Line.

Creando y definiendo Estilos de texto

Si queremos crear un estilo de texto o modificar y/o ver los ya existentes en AutoCAD, lo podremos hacer mediante el comando STYLE (o ST) y luego presionando enter, o también seleccionando el icono de Estilos de texto el cual se encuentra extendiendo la flecha inferior del grupo Annotation:

Si realizamos cualquiera de las operaciones anteriores llegaremos al siguiente cuadro llamado precisamente Text Style:

En este cuadro encontramos los estilos que están creados por defecto llamados Annotative y Standard. En el caso del texto Annotative o Anotativo, tiene por ventaja principal el hecho que, si lo asociamos a una o más escalas de trabajo en el espacio model y en la ventana gráfica del layout, mantienen el mismo tamaño de impresión aunque el dibujo o plano esté en diferentes escalas en las ventanas gráficas o viewports. El estilo Standard en cambio, no posee esa cualidad y se escalará en función de la escala de la ventana gráfica, tal como se aprecia en los siguientes ejemplos:

Texto anotativo versus Texto Standard. En el ejemplo la misma planta está en escalas 1:50 y 1:100 y el texto anotativo está a igual tamaño en ambas, mientras que el Standard se achica en la planta 1:100.

Volviendo al cuadro de edición de textos, este tiene las siguientes opciones o partes:

1) Styles: en este cuadro podremos ver los estilos predeterminados y/o que hayamos creado, y también podremos seleccionar alguno para editarlo o dejarlo como estilo activo o Current. Está relacionado con la función View Styles (4).

2) Font: define el tipo y estilo de las fuentes de texto del estilo que queramos editar. En Font Name podremos definir el tipo de texto mientras que en Font Style definiremos el estilo que contenga ese tipo: Regular, Cursiva, Negrita o Negrita Cursiva.

Definiendo el tipo de texto mediante Font Name.

Definiendo el estilo de texto mediante Font Style.

3) Set Current, New y Delete: estos botones nos permitirán crear, borrar o activar un estilo de texto. New nos permite crear un estilo nuevo el cual será una copia del estilo seleccionado por defecto o en modo Current (activo). Si presionamos New, nos aparecerá un cuadro en el cual podremos un mobre a nuestro texto y luego presionamos OK para crearlo. Si creamos un estilo, lo modificamos y presionamos OK, este quedará activo por defecto.

Creando un estilo de texto nuevo llamado “estilo 1” mediante el botón New.

Current nos define el estilo “activo” y al igual que en el caso del layer Current, al definir un estilo como “Current” implicará que al ocupar los comandos TEXT, T o MTEXT el estilo que se nos dibujará en el plano o área será precisamente el seleccionado como Current o activo. Si creamos un estilo nuevo y lo guardamos, quedará como activo por defecto. Por supuesto que podremos asignar este estado a cualquiera de los estilos que poseamos y en cualquier momento si accedemos al cuadro de Text Styles.

Escribiendo en el área de trabajo con el estilo creado ya que este queda como Current o activo.

Delete nos permitirá borrar un estilo de texto siempre y cuando este no esté activo o Current y no tenga textos definidos con ese mismo estilo en el dibujo o lo que es lo mismo, que el estilo esté en uso.

En el ejemplo, el estilo creado llamado “estilo 1” NO puede borrarse ya que este está en uso. Es decir, el texto está definido en el área de trabajo.

En el ejemplo, el estilo creado llamado “estilo 1” SÍ puede borrarse ya que este no está utilizándose. Es decir, el texto regido a ese estilo fue borrado en el área de trabajo.

4) View Styles: en este cuadro podremos ver todos los estilos en el cuadro superior (All Styles) o sólo el Estilo Current y todos los que tengamos utilizados en nuestro dibujo (Styles in use).

5) Size y Height: la opción Size nos indica si queremos que los textos sean anotativos o no al marcar la casilla Annotative. Si además de esta seleccionamos Match text orientation to Layout, igualaremos las orientaciones de textos definidas en las ventanas graficas del espacio papel con la orientación del layout. Height en tanto nos indicará la altura del texto de nuestro estilo y si definimos un valor, al crear el texto mediante Single Line notaremos que el comando ya no nos pedirá la altura, puesto que asume la que definimos previamente al crear el estilo.

En el ejemplo se ha definido el estilo llamado “estilo 1” y en Height se ha establecido la altura 50.

Tip: es muy importante tener en consideración que si establecemos la altura o Height en “0” (0.0000), podremos asignar cualquier altura al definir el texto ya que el parámetro 0 indica literalmente “la altura a definir por el usuario”. Por esta misma razón es que los estilos predeterminados Annotative y Standard poseen el valor de Height en 0.

5) Effects: esta opción nos permite aplicar varios efectos alternativos a nuestro estilo. Los efectos de los que disponemos son:

a) Upside down: invierte el texto en vertical.

b) Backwards: invierte el texto en horizontal.

c) Width Factor: especifica el factor de anchura del texto. El múmero 1 representa el valor por defecto y el tamaño original de nuestro texto. Si colocamos valores menores que 1 el texto se estrecha, mientras que valores mayores harán que este se expanda.

Aplicando Width Factor de 0.5 y de 2 respectivamente.

Demás está decir que podremos mezclar todos estos efectos y aplicárselos a nuestro estilo personalizado de texto, de forma parecida a la siguiente imagen:

Aplicación de todas las opciones de edición de text Style en un estilo personalizado, y su resultado en pantalla.

Como ya se había dicho antes, la ventaja de los estilos de texto es que podremos crear atributos de texto específicos para cada parte de nuestro dibujo ya que podremos definir atributos para valores de cotas, ejes, recintos y otros textos que necesitemos en nuestro dibujo. También notaremos que al crear uno o más estilos, estos serán visibles al extender el menú del grupo Annotation si presionamos la flecha inferior del menú del lado del icono Text Styles:

En el ejemplo, el estilo personalizado llamado “estilo 1” es visible en el menú Annotation.

Esto es importente que lo comprendamos puesto que este cuadro nos permitirá cambiar uno o más textos a un estilo diferente primeramente seleccionando el o los textos, luego yendo a este menú y finalmente cambiarlo por el estilo que deseemos.

Esto es sumamente importante ya que, si modificamos los parámetros de un estilo que está en uso en el cuadro Text Style y aceptamos, notaremos que el texto definido en el área de trabajo no es afectado. Podemos remediar esto seleccionando el o los textos, luego cambiándolos de estilo y luego volviendo al original, de acuerdo a la siguiente imagen:

En el ejemplo se ha cambiado Width Factor a 0.5 del estilo personalizado “estilo 1” y posteriormente se han seleccionado los textos, luego se cambian a otro estilo cualquiera y finalmente se vuelve al estilo original para apreciar los cambios.

Ahora bien, si volvemos a nuestro texto Single Line y ejecutamos el comando TEXT, notaremos que antes de insertar el texto encontramos lo siguiente en la barra de comandos:

Lo cual se resume en los siguientes subcomandos: Justify y Style.

Justify (J): permite determinar la posición del texto. En este caso tenemos los siguientes subcomandos:

Left (L): posiciona el texto a la izquierda, colocando su punto de inserción allí.

Center (C): posiciona el texto al centro, colocando su punto de inserción allí.

Right (R): posiciona el texto a la derecha, colocando su punto de inserción allí.

Align (A): alinea y ajusta el texto entre dos puntos que definamos. En este caso la escala del texto será mayor cuanto más corto sea el texto que escribamos.

Middle (M): define primeramente el punto medio del texto y luego podremos escribir respecto a este.

Fit (F): encaja el texto de manera precisa entre dos puntos que definamos. El texto se mantendrá en un tamaño constante.

Top Left (TL): posiciona el texto arriba a la izquierda, colocando su punto de inserción allí.

Top Center (TC): posiciona el texto arriba al centro, colocando su punto de inserción allí.

Top Right (TR): posiciona el texto arriba a la derecha, colocando su punto de inserción allí.

Middle Left (ML): posiciona el texto arriba a la izquierda, colocando su punto de inserción allí.

Middle Center (MC): posiciona el texto arriba al centro, colocando su punto de inserción allí.

Middle Right (MR): posiciona el texto arriba a la derecha, colocando su punto de inserción allí.

Bottom Left (TL): posiciona el texto abajo a la izquierda, colocando su punto de inserción allí.

Bottom Center (TC): posiciona el texto abajo al centro, colocando su punto de inserción allí.

Bottom Right (TR): posiciona el texto abajo a la derecha, colocando su punto de inserción allí.

Style (S): permite asignar el estilo de texto en el cual trabajaremos. Si lo invocamos, podremos asignar el nombre de un estilo para que sea este el que defina nuestro texto al dibujarlo en la pantalla.

Ahora bien, también encontraremos la opción ? la cual nos será de ayuda ya que, si no conocemos el nombre del estilo, esta opción nos permitirá listar todos los estilos que tengamos disponibles. En este caso, al invocar la opción nos aparece lo siguiente en la barra de comandos:

Si presionamos enter veremos la lista de todos los estilos lo cual nos ayudará a recordar y luego colocar el nombre de este en el subcomando Style, tal como se aprecia en la imagen:

En la siguiente imagen vemos un claro ejemplo de aplicación de estilos de texto y textos Single Line: en este caso tenemos una planta de vivienda donde se han creado tres estilos diferentes los cuales definirán los textos de los nombres de los recintos (mediante el tipo de letra Century Gothic), los símbolos de los ejes (en Arial) y los valores de las cotas (en Calibri), ya que como sabemos estas se rigen mediante el estilo predeterminado Standard. Estos tres estilos se han aplicado mediante Single Line en el dibujo donde vemos claramente los tres tipos y tamaños de texto diferentes.

Si vamos al editor de estilos de cota del ejemplo anterior podremos apreciar que en Text Style se ha definido el estilo de las cotas llamado “Texto para cotas”, el cual tiene una altura o Height de 8 y que quedará fijo para este tipo de textos, además que por supuesto se aplicarán todos los cambios que realicemos a su estilo.

En la segunda parte del tutorial veremos los textos de tipo Multiline y conoceremos las funciones propias de estos, y sus diferencias respecto a los textos simples.

Este es el fin de este tutorial.

AutoCAD 3D Tutorial 16: niveles de Subobjetos en sólidos

Como ya sabemos, AutoCAD nos permite realizar infinita variedad de modelado 3D gracias a sus múltiples herramientas y una de las características más recientes del programa es poder manipular los sólidos 3D de forma relativamente sencilla mediante niveles de “Subobjetos” de un sólido en particular, de forma similar a como ocurre en 3DSMAX. En este nuevo tutorial de AutoCAD 3D aprenderemos a modelar un techo muy sencillo pero esta vez sin utilizar herramientas como UCS, Booleanas o cortes, ya que en este caso solamente manipularemos los niveles de subobjeto de los mismos sólidos ya sea moviendo los vértices, lados o caras de estos. Luego aplicaremos materiales sencillos y realizaremos un render para apreciar el resultado final.

Iniciando el proyecto

Comenzaremos el proyecto dibujando mediante el comando box una caja de largo (length) de 400, ancho (width) de 800 y altura (height) de 150. Esta será la base para nuestra techumbre.

Una vez realizada, realizaremos una copia (mediante el comando copy o cp) y la colocaremos de forma adyacente a la primera caja. Con esto formaremos la segunda “agua” de nuestra cubierta.

Grupo Selection: Culling y Move gizmo

Ahora viene lo fundamental para este ejercicio ya que aprenderemos a manipular los niveles de subobjeto de cada sólido. Debemos hacer mención que cuando tomamos un sólido 3D y estamos en la persiana Solid, notaremos que en grupo llamado Selection encontraremos la opción “No filter” como opción predeterminada para un sólido. Esto nos indica que no hay ningún nivel de subobjeto seleccionado y por ende, tomará todo el sólido como base al ser seleccionado.

También encontraremos una interesante opción llamada Culling la cual nos permitirá mostrar o no las aristas y vértices interiores de un sólido 3D. Se puede activar o desactivar presionando el botón respectivo o mediante el comando cullingojb (cul), donde debemos asignar el valor 0 para desactivarlo y 1 para activarlo.

Este comando puede ejemplificarse en las siguientes imágenes:

Objeto seleccionado con Culling desactivado (cullingobj=0). En este caso vemos las aristas y vértices interiores del sólido.

Objeto seleccionado con Culling activado (cullingobj=1).

En el caso de Move Gizmo, este nos permitirá cambiar el tipo de transformación del objeto al seleccionarlo. Por defecto nos aparece el Gizmo de Move o Move Gizmo, pero podremos seleccionar también el Gizmo de Rotate, el de Scale o incluso desactivar el Gizmo según lo requieramos. Se puede activar o desactivar eligiendo la opción respectiva al presionar la flecha del lado de Move Gizmo:

También podremos elegir las transformaciones mediante el comando defaultgizmo (def), donde debemos asignar el valor 0 para activar el Gizmo de Move, 1 para el Gizmo de Rotate, 2 para el Gizmo de Scale y 3 para desactivar el Gizmo.

Este comando puede ejemplificarse en las siguientes imágenes:

Objeto seleccionado con Gizmo Rotate (defaultgizmo=1).

Objeto seleccionado con Gizmo Scale (defaultgizmo=2).

Objeto seleccionado con Gizmo Rotate (defaultgizmo=3).

Los niveles de Subobjetos en el sólido 3D

Volviendo a los subobjetos del sólido, si seleccionamos la flecha que está debajo del icono No Filter en cuestión, nos aparecerán las siguientes opciones o variables:

Donde tendremos lo siguiente:

– Vertex: primer nivel de sub-objeto del sólido. Esta opción hará que podemos seleccionar cualquier vértice de cada sólido al ser seleccionado.

– Edge: segundo nivel de sub-objeto del sólido. Esta opción hará que podemos seleccionar cualquier lado o arista de cada sólido al ser seleccionado.

– Face: tercer nivel de sub-objeto del sólido. Esta opción hará que podemos seleccionar cualquier cara de cada sólido al ser seleccionado.

Además tendremos las opciones Solid History y Drawing View Component. El primero nos permitirá seleccionar las representaciones en estructura alámbrica de las partes de los objetos eliminados durante una operación de unión, resta o intersección de un sólido. La segunda opción nos permite seleccionar los componentes 3D en una vista de dibujo o Paper space. Sin embargo, en este tutorial solamente veremos los tres primeros niveles de subobjetos llamados Vertex, Edge y Face.

Antes de comenzar, debemos tomar en consideración que estos niveles también pueden ser seleccionados mediante el comando llamado subobjselectionmode (subobj), donde debemos asignar el valor 0 para No filter, 1 para Vertex, 2 para el Edge y 3 para Face.

Otra forma de seleccionar los distintos niveles de subobjeto es mediante los siguientes atajos de teclado:

Shift+F1: No Filter.
Shift+F2: Vertex.
Shift+F3: Edge.
Shift+F4: Face.

Y otra forma de seleccionar los subobjetos de un sólido es simplemente presionando Ctrl y con la tecla presionada realizar Click en el subobjeto que queramos seleccionar (vértices, aristas o caras).

Seleccionando una cara del sólido mediante Ctrl+click en la cara respectiva.

Volviendo a nuestros sólidos ya modelados, si seleccionamos el subobjeto Vertex notaremos que el cursor cambiará de la siguiente manera:

Este nos indica que estamos en el modo de subobjeto Vertex y por ello, sólo se seleccionarán uno o más vértices de nuestro sólido sin seleccionar el total de este. Para formar el techo de nuestro proyecto, seleccionamos los dos vértices superiores del lado mayor de la caja y al hacerlo, notamos que nos aparece el Gizmo de Move (Move Gizmo) con los ejes X, Y y Z.

Lo que haremos ahora será colocarnos en el eje Z con el cursor y hacer click ya que con esto podremos mover los vértices restringiendo el movimiento al eje Z, movemos hacia abajo con el valor 135 y luego presionamos enter. Con esto damos forma a la primera agua de nuestro techo, de acuerdo a la siguiente secuencia:

Como vemos en las imágenes, el sólido se modifica ya que al mover los vértices alteramos la forma de este y con ello podremos editarlo sin problemas. Esta técnica puede ser utilizada en cualquier sólido 3D y nos permitirá una edición rápida de estos sin tener que ocupar herramientas más complejas como cortes u operaciones Booleanas. Sin embargo, es bueno conocer las propiedades generales de los Subobjetos antes de proceder con el ejercicio.

Propiedades generales de los Subobjetos

Podemos definir propiedades de los subobjetos de forma sencilla si seleccionamos un vértice (o lado o cara) y colocamos el cursor en este. Si seleccionamos un vértice por ejemplo, nos aparece lo siguiente:

En este caso tenemos las opciones Move Vertex y Allow Triangulation. Move Vertex nos permitirá mover el vértice de forma libre mientras que Allow Triangulation nos permitirá dividir los polígonos adyacentes a este mediante triángulos, para así evitar deformaciones extrañas del sólido mientras se manipula o mueve el vértice.

Modificando el sólido moviendo un vértice de forma libre mediante la opción Move Vertex.

Modificando el sólido moviendo un vértice de forma libre mediante la opción Move Vertex, pero esta vez activando la opción Allow Triangulation.

Ahora bien, se seleccionamos el vértice y presionamos el botón secundario del mouse nos aparecerá un menú con varias opciones:

Estas son las siguientes:

Move, Rotate, Scale: al seleccionar el vértice por defecto nos aparece el Gizmo de transformación de Move. Si seleccionamos Rotate o Scale nos aparecerán los gizmos que nos permitirán rotar o escalar el o los vértices seleccionados.

Cambiando el tipo de transformación del vértice eligiendo la opción Rotate.

Set Constraint: establece restricciones al movimiento, rotación o escala según el eje o plano que se elija. Las opciones que tenemos en este caso son los ejes X, Y, Z o los planos XY, XZ, YZ.

Relocate Gizmo: esta opción nos permitirá cambiar la posición del gizmo del vértice, lo que permitirá transformarlo desde otra posición o tomando como referencia otro punto.

Al elegir esta opción debemos colocar el Gizmo en la posición definitiva y luego podremos efectuar la transformación que deseemos, tal como se aprecia en la secuencia siguiente:

Estableciendo una nueva posición del gizmo del vértice mediante Relocate Gizmo y luego moviendo este desde la nueva posición.

Align Gizmo With: Esta opción nos permitirá alinear el gizmo respecto a un UCS determinado o el que tengamos aplicado en ese momento.

En este caso tenemos tres opciones las cuales son:

World (WCS): alinea el Gizmo respecto al UCS por defecto, independientemente del UCS que tengamos activo.

Current (UCS): alinea el Gizmo respecto al UCS que tengamos activo.

Object: alinea el Gizmo respecto al objeto mismo.

Custom Gizmo: esta nos permitirá definir nuestro propia posición del Gizmo definiendo tres puntos (origen, X e Y) de forma similar a como lo hacemos con UCS.

Volviendo a nuestro ejercicio, nos quedará definir la siguiente agua para nuestra techumbre pero en este caso lo haremos mediante el subobjeto Edge, ya que este nos permitirá tomar uno o más lados o aristas del sólido. Al seleccionarlo, el cursor cambia de la siguiente manera:

Este nos indica que estamos en el modo de subobjeto Edge y por ello, sólo se seleccionarán uno o más aristas de nuestro sólido sin seleccionar el total. Para formar nuestro techo, seleccionamos la arista superior del lado mayor de la segunda caja y al hacerlo, notamos que al igual que en el caso de los vértices, nos aparece el Gizmo con los ejes X, Y y Z.

Si seleccionamos el lado de la segunda caja, las opciones que nos aparecerán serán las mismas que en el caso de Vertex pero en este caso se nos agregará una nueva propiedad llamada Extend Adjacent Faces:

Esta propiedad nos permitirá mover el lado pero restringiéndolo de forma automática a cada lado adyacente, en cuatro direcciones posibles:

Direcciones posibles de movimiento de un lado utilizando la propiedad Extend Adjacent Faces.

Si seleccionamos la opción Move Edge podremos mover el lado de forma normal y sin restricciones, de forma parecida a Move Vertex:

Y al igual que en el caso de los vértices, la opción Allow Triangulation nos permitirá agregar triángulos al sólido para evitar deformaciones extrañas en este:

El resto de las propiedades ya estudiadas para Vertex se aplican de igual manera para el caso del subobjeto Edge. Para terminar nuestro ejercicio, seleccionaremos el lado mayor de la caja y asegurándonos que el Gizmo sea el de Move, lo restringimos al eje Z y podremos moverlo hacia abajo con el valor 135 y luego presionando enter.

Ahora nuestro techo ya está listo pero haremos una pequeña modificación ya que editaremos la primera caja, retranqueándola un poco hacia atrás para ocupar el tercer subobjeto llamado Face. Este nos permitirá seleccionar una o más “caras” de un sólido y por ello podremos efectuar transformaciones con estas, de forma similar a lo realizado con Vertex o Edge. Al seleccionar el subobjeto Face, el cursor cambia de la siguiente manera:

Este nos indica que estamos en el modo de subobjeto Face y por ello, sólo se seleccionarán uno o más caras de nuestro sólido sin seleccionar el total. Para formar nuestro techo, seleccionamos la cara inferior de la primera caja y al hacerlo, notamos que al igual que en el caso de los vértices, nos aparece el Gizmo con los ejes X, Y y Z. Las propiedades que se estudiaron con Vertex y Edge se aplican de igual manera en el caso de Face y por ello, en este caso sólo nos bastará con mover la cara respecto al eje Y y aplicando el valor 200:

Con estas operaciones ya hemos formado el techo de manera definitiva y sólo nos quedará aplicarle materiales para que se nos vea de forma un poco más realista. Un tip interesante sobre materiales que nos ayudará mucho es el siguiente: si tenemos problemas al mapear ciertos elementos ya que en varias ocasiones no se mapean de forma correcta todas las caras del mismo, lo que podemos hacer es duplicar el material y luego aplicar este (arrastre más shift presionado) en las zonas que se requiera mapear o editar de forma diferente, luego de esto podemos aplicar el mapeado o directamente editar las imágenes del material mismo.

El resultado del techo con los materiales aplicados y mapeados es el siguiente:

El render final de nuestro modelo es el siguiente:

Si lo queremos, podemos agregar más detalles a nuestro modelo o trabajarlo directamente mediante comandos como Solidedit para conseguir un modelado más realista de nuestra cubierta.

Este es el final de este tutorial.

AutoCAD 3D Tutorial 15: modelado de escalera caracol utilizando Helix

Como ya sabemos, AutoCAD nos permite realizar infinita variedad de modelado 3D gracias a sus múltiples herramientas y una de ellas es el relativamente poco utilizado comando llamado Helix, el cual nos permitirá definir formas curvas complejas ya que consiste en una “espiral” 3D formada por curvas similares a Spline. En este nuevo tutorial de AutoCAD 3D aprenderemos a modelar una escalera de caracol de una manera relativamente sencilla ya que si bien esta es una de las escaleras más difíciles de resolver debido principalmente a la complejidad de  sus curvas, nos ayudaremos del comando Helix para definir su trayectoria y curvatura. Para la realización de este proyecto utilizaremos líneas de base y aplicaremos Helix en la escalera para definir la curvatura y generar un efecto de continuidad en la escalera. También aplicaremos comandos como loft y utilizaremos otras funciones como recortar mediante superficies, utilizando el comando Slice.

Preparando la base de la escalera

Comenzaremos el proyecto dibujando mediante el comando circle (C) un círculo de radio 70. Una vez realizado, generaremos otro círculo de radio 5 el cual tendrá como centro el centro del círculo mayor. Este último definirá el “center pole” o poste central de nuestra escalera:

A continuación realizaremos una línea (mediante line) la cual irá desde el centro del círculo pequeño hasta el cuadrante derecho del círculo mayor. Esta línea será nuestra partida para definir los peldaños de la escalera.

Ahora realizaremos un array, elegiremos la opción polar y definiremos el centro del círculo menor como punto de centro (center point) de este.

Lo que haremos ahora será el número de ítems en 16 y cerramos el array. Con esto formaremos todos los peldaños de la escalera.

Si bien las escaleras de caracol tradicionales suelen definirse en 3/4 de círculo (unos 12 peldaños), en el caso de este proyecto haremos un ciclo completo de 16 peldaños ya que la altura que tendrá nuestra escalera será de 3,20 mts (320 cms). Dibujaremos mediante line una línea hacia arriba (con F8 activado) para definir como altura 320.

Lo que corresponderá ahora será definir la trayectoria y por ende la curvatura que tendrá nuestra escalera. Para eso utilizaremos el comando Helix ya que este nos permitirá definir la “espiral” de la escalera. Escribimos Helix (o hel) y presionamos enter:

Al invocar el comando, lo primero que este nos pedirá será el punto central de la base (Start Point) de la espiral. Seleccionamos el centro del círculo pequeño:

Ahora definiremos el radio de la base de la espiral o Base Radius. En este caso seleccionaremos el punto final de la primera línea de peldaño que dibujamos. Es muy importante que lo hagamos de esta manera ya que esto hará que la espiral comience justamente desde esa línea.

Helix nos pide ahora el radio de la altura (Top Radius) de la espiral. Como ambos radios son iguales, definiremos el valor del radio en 70 y presionamos enter:

El siguiente paso es definir la cantidad de ciclos o “turns” (vueltas) que tendrá nuestra espiral. Por defecto Helix posee 3, pero para nuestra escalera asignaremos el valor 1 ya que necesitamos que la espiral tenga un solo ciclo o vuelta.

Tip: si queremos un ciclo normal de 3/4 de círculo, debemos definir en Turns el valor 0.75.

Finalmente Helix nos pedirá la altura total que tendrá nuestra espiral. Definiremos el valor 320 y presionamos enter para finalizar el comando.

La idea es que el resultado sea el mostrado en la imagen siguiente. Si nos equivocamos en alguno de los pasos anteriores, podremos tomar nuestra Helix y editarla mediante el panel de propiedades (PR).

Con esto ya tenemos definida la base de la escalera y podremos comenzar el modelado.

Modelando la escalera

Comenzaremos el modelado definiendo cada peldaño de nuestra escalera mediante el comando presspull. Definiremos cada área y la extruiremos a la altura de 20 hasta definir todos nuestros peldaños.

Una vez modelados todos los peldaños, tomaremos el último y lo movemos desde la base al punto final del penúltimo peldaño.

Luego tomamos ambos y repetimos la secuencia hasta formar todos los peldaños de nuestra escalera.

El resultado final de las operaciones realizadas es el de la imagen siguiente. Notaremos que la Helix calza perfectamente en las diagonales de cada peldaño y que la espiral se define desde el primero hasta el último de estos.

El siguiente paso es unificar toda la forma 3D mediante union y luego la moveremos hacia un lado, ya que ahora necesitaremos formar la curvatura de la escalera. Notaremos que al mover los peldaños tendremos libres la Helix y la línea del Center pole, ya que los necesitaremos para crear la curva. Para esto, aplicaremos loft y seleccionamos la línea, luego la helix y finalmente aceptamos con enter dos veces. Con esto la curvatura de la escalera quedará definida por una superficie.

Volveremos a colocar los peldaños en su posición original mediante move y ahora definiremos la curvatura definitiva de la escalera. Lo que haremos será aplicar el comando slice y cuando el comando nos pregunte acerca del sólido a seleccionar elegiremos los peldaños:

Ahora nos vamos a las opciones de Slice y nos corresponderá seleccionar la opción Surface (S). Esto nos permitirá recortar el sólido tomando como referencia una superficie.

Luego de elegir la opción, seleccionamos la superficie de la curvatura recién creada. Podemos ayudarnos con Selection Cycling si hay problemas al seleccionarla.

Finalmente aceptaremos mediante enter y con esto ya habremos realizado el corte. Seleccionamos los peldaños de la parte baja de la escalera y los borramos mediante supr.

Como se aprecia en las imágenes, la escalera ya está prácticamente definida pero no será realista, ya que un peldaño no se sostiene estructuralmente en el canto de otro. Por ello, debemos aumentar el grosor de la curvatura para que la escalera se represente de una manera más acorde a la realidad. Para esto, seleccionaremos la superficie de la curvatura y aplicaremos el comando llamado Thicken:

Thicken (thi): extruir superficie.

Thicken nos permitirá extruir la superficie recién creada mediante la definición de un grosor y a su vez la convertirá en un sólido.

Cuando Thicken nos pregunte sobre la definición del grosor (Specify Thickness) le asignamos el valor 5 y luego presionamos enter. Con ello ya habremos definido la estructura definitiva de nuestra escalera.

Ahora todo es cuestión de fusionar mediante union los peldaños más el sólido de la curvatura, y ajustar algunos detalles menores para terminar el proyecto.

El primer ajuste que haremos será reparar el primer peldaño puesto que debido a la extrusión de la curva de la escalera, parte del sólido queda bajo el plano XY o “cota 0”. En este caso la reparación es sencilla puesto que lo único que debemos hacer es dibujar un box hacia abajo y de mayor dimensión que los peldaños, luego se la restaremos a los peldaños mediante subtract y así solucionamos el problema.

El siguiente paso es un poco más complicado ya que debemos reparar el peldaño superior. Es complejo porque en este caso debemos agregar más material en lugar de sustraer, y la curva hace que sea más difícil repararla. Lo que debemos hacer es primeramente dibujar una box que irá desde el borde del peldaño hasta el borde opuesto de la escalera, de acuerdo a la secuencia siguiente:

La altura de la box quedará definida por la parte inferior de la curvatura, como se muestra en las imágenes:

El siguiente paso será girar la vista para enfocar el inicio de la box recién creada y establecer el plano XY en la diagonal de la curva. Para ello escribimos UCS y presionamos enter, cuando se nos pregunta por el punto de origen del plano seleccionamos el punto inferior de la curva, tal como se muestra en la imagen:

Cuando UCS nos pregunte por el eje X seleccionamos el punto superior de la curva, tal como se muestra en la imagen siguiente:

Activaremos el ayudante Nearest y cuando UCS nos pregunte por el eje Y del plano, elegiremos un punto cualquiera de la curvatura inferior, tal como se muestra en la imagen siguiente:

Con esto habremos definido correctamente el UCS y gracias a esto podremos cortar el sólido sin sacrificar la curvatura. Para cortarlo, ejecutamos el comando Slice y seleccionamos la box:

Una vez seleccionado, debemos establecer el punto inferior de la curvatura como primer punto de corte:

Con el ayudante Nearest activado seleccionamos cualquier punto de la curvatura inferior para definir la recta por donde se cortará el sólido:

Una vez realizado esto, presionamos enter para confirmar y para salir de Slice. Con esto hemos cortado el sólido a partir de la diagonal.

Terminamos el ajuste tomando el sólido sobrante y lo borramos mediante supr.

Ahora todo es cuestión de tomar el sólido y la escalera, y fusionarlos mediante el comando union. Con estas operaciones ya hemos terminado los ajustes, y sólo nos queda definir el center pole y la baranda de nuestra escalera.

Definir el Center pole será muy sencillo pues es cosa de modelar un cilindro del radio del círculo pequeño (5), y de altura le asignaremos 410.

Para el caso de la baranda, lo que haremos será mover la Helix ya que notaremos que se ha conservado al realizar el loft. Podemos ayudarnos mediante Selection Cycling y la seleccionamos para posteriormente moverla mediante el Gizmo o el comando move.

Lo que haremos a continuación será copiar la helix hacia arriba para formar la baranda. En este caso, podremos copiar mediante el gizmo primeramente definiendo el eje en Z, luego seleccionando la opción Copy (C) y finalmente asignamos el valor 110 para copiar la helix tal como se aprecia en la secuencia siguiente:

Lo que corresponde ahora es realizer un loft entre las superficies para formar la baranda:

Una vez realizada la operación, procederemos a engrosarla mediante el comando Thicken, asignándole esta vez el valor de -5. Este valor hará que la extrusión se realice hacia el interior de la baranda.

Finalmente nos quedan sólo dos pasos los cuales son: primeramente mover la baranda hacia la escalera tomando como base el punto inferior de esta, y luego fusionarla a la escalera mediante el comando union.

Con esto la escalera está prácticamente terminada, pero faltará un pequeño ajuste para que se finalice por completo. Lo que debemos hacer es ir a la parte superior de la escalera para completar la baranda pues hay un pequeño espacio que no está definido. En este caso, modelamos una box entre los espacios y la altura, para finalmente fusionarla a la escalera mediante union y así terminarla de manera definitiva.

Lo que corresponde ahora es asignarle algún material similar al hormigón o concreto para poder realizar el renderizado final de nuestro modelo. En este caso se le ha asignado el material Flat Polish Gray y luego se ha mapeado toda la escalera mediante box.

El render final de nuestro modelo es el siguiente:

Una variación que podemos realizar en el ejercicio es realizar la curvatura mediante spline en lugar de helix, aunque en este caso siempre deberemos tomar los puntos finales de unión entre cada peldaño al ir generando la curva. Esto se recomienda sobre todo cuando no tenemos la certeza de las dimensiones exactas de nuestra escalera.

Este es el final de este tutorial.

AutoCAD 3D Tutorial 09: Render y GI parte 4, Renderizado con AutoCAD 2017-18

Cuando hablamos de una escena con iluminación tipo GI (Global Ilumination o Iluminación Global) lo que en realidad tenemos es Iluminación Indirecta, esto es, el rebote de la luz entre las diferentes superficies y por consiguiente la mezcla de colores entre ambas. En las antiguas versiones de AutoCAD lograr GI era prácticamente imposible, pero gracias a las mejoras del programa y sobre todo la adición del motor de Render Mental Ray de 3DSMAX podremos realizar configuraciones y renders bastante realistas y creíbles. Podremos configurar diversos parámetros de GI para lograr mayor realismo o generar ciertos efectos especiales de iluminación. A diferencia de otros programas como 3DSMAX, AutoCAD nos genera la iluminación GI de manera casi automática sin necesidad de agregar luces extras ni recordar configuraciones especiales.

En  esta cuarta parte de Render y GI veremos las opciones de renderizado mediante AutoCAD 2017 y 2018, ya que estas difieren respecto de las antiguas versiones del programa. Por lo tanto, este tutorial es válido sólo para estas versiones.

Para el desarrollo de este tutorial requeriremos del archivo DWG respectivo, el cual se encuentra disponible en este enlace o en la página de descargas.

Definiendo Parámetros previos

Para esta cuarta parte del tutorial de render ocuparemos una archivo predefinido el cual es una variación del tutorial del templo griego ya visto antes pero en este caso, se le ha agregado un pequeño contexto. Abriremos este archivo en AutoCAD de tal modo que se nos muestre lo siguiente:

Los parámetros de configuración de render como el Sol (Sun), el cielo (Sky) o el fondo (Background) son similares a los de las versiones anteriores de AutoCAD, aunque en este caso algunos elementos del render desaparecen o se incorporan ya que, por ejemplo, si activamos Sky Background and Illumination ya no contaremos con “Final Gather”, sino que el sombreado ya viene incorporado al realizar el render puesto que este renderiza mediante “niveles”. Esto permite que en estas versiones de AutoCAD podamos “elegir” el tiempo de render lo cual es toda una novedad en el programa. Otra cosa a destacar es que los elementos de render se encuentran en la persiana llamada Visualize, en lugar de la de Render tradicional.

Elementos de render y la persiana Visualize de AutoCAD 2017-18.

Volviendo a nuestro tutorial y una vez que tengamos nuestro archivo abierto, procedemos a activar el Sol (comando sunstatus) y como ya sabemos, nos aparecerá el anuncio que nos indica que debemos apagar la luz por defecto de AutoCAD. Si realizamos esto, ahora nos aparecerá el siguiente menú:

Este nuevo menú nos indica que la luz del Sol o “Sunlight” necesitará ajustes diferentes de “exposición” respecto a las otras luces. También nos advierte que de no realizar esto, los renders podrían verse demasiado brillantes o demasiado opacos según sea el nivel preterminado de ajuste. Por esto mismo, el cuadro nos indicará si queremos ir a la pantalla de ajuste de Exposición (Adjust exposure settings) o si queremos mantener las opciones tal como están (Keep exposure settings). Para este ejercicio, dejaremos la segunda opción ya que veremos las opciones de ajuste de este cuadro más adelante.

Otra novedad que tenemos en el programa es la inclusión de manera automática de los diferentes tamaños de imagen o Image Size en el botón de render. En este caso no sólo tenemos los tamaños más utilizados en el renderizado sino que además tendremos formatos para impresión como el A3, A4 o Letter:

Si queremos acceder a mayores tamaños de render o elegir uno personalizado debemos ir a la opción More Output Settings. Si activamos la casilla Lock Image Aspect podremos bloquear la relación de aspecto de la imagen, para así escalarla de manera automática no importando el valor de Width o de Height que asignemos.

Un aspecto interesante de este cuadro es que podremos guardar la imagen del render de forma automática si activamos la casilla Automatically save rendered image. En este caso, asignamos una ruta y un nombre de archivo en la opción Browse. Sin embargo, debemos tener cuidado al realizar un segundo render mediante el botón respectivo puesto que antes de guardarlo nos preguntará si queremos sobreescribirlo, tal como se muestra en el ejemplo siguiente:

Volviendo a nuestro ejercicio, si dejamos el tamaño de 800 x 600 px SVGA y realizamos un render a nuestro archivo y no hemos activado Sky Background, el resultado será el siguiente:

Ahora procedemos a activar la opción Sky Background and Illumination para colocar la iluminación global y nuevamente procedemos a realizar el render.

El resultado del render ahora es el siguiente:

Como notamos en la imagen, el sombreado se ajusta de manera automática a nuestro modelo y con ello el render está prácticamente “terminado”. Sin embargo, es importante que conozcamos los parámetros avanzados de renderizado y sobre todo, las diferentes calidades de los renders para precisamente mejorarlos o adaptarlos al contexto que necesitemos como por ejemplo, si es día frío o cálido.

Ajustando los parámetros de exposición y envolvente

Una de las novedades de las versiones avanzadas de AutoCAD es la inclusión de los parámetros de Envolvente y Exposición o mejor dicho, Environment and Exposure. Podemos acceder a estos parámetros mediante el comando renderexposure o también yengo al grupo Render y presionar la flecha de abajo (indicada en verde), tal como se muestra en la secuencia siguiente:

Al seleccionar la opción Render Environment and Exposure nos aparece el cuadro siguiente:

En este cuadro encontramos dos opciones: Environment que hace referencia al “envolvente” o contexto en el cual renderizaremos nuestro modelo, y Exposure el cual se encarga de ajustar la “exposición” o mejor dicho, los tonos del environment antes mencionado.

Si en Environment activamos la opción ON, podremos ocupar en nuestro modelo los envolventes predefinidos de la opción Image Base Lightning, los cuales a su vez afectarán a su vez la iluminación global de todo el modelo 3D. Otro aspecto interesante de los envolventes es que el fondo rotará 360° junto a nuestro modelo, además de adaptarse perfectamente a cualquier posición en que rotemos el modelo en la vista.

Los envolventes predefinidos de los que disponemos son los siguientes:

1) Gypsum Crater: el envolvente es un cráter de yeso.

Si realizamos un render con este envolvente activado, el resultado es el siguiente:

Podemos quitar el suelo de nuestro modelo y nuevamente realizar el render para apreciar el efecto completo de este envolvente:

2) Dry Lake Bed: el envolvente es el lecho seco de un lago.

Si realizamos un render con este envolvente activado, el resultado es el siguiente:

Podemos quitar el suelo de nuestro modelo y nuevamente realizar el render para apreciar el efecto completo de este envolvente:

3) Plaza: el envolvente es el espacio central de una plaza dura.

Si realizamos un render con este envolvente activado, el resultado es el siguiente:

Podemos quitar el suelo de nuestro modelo y nuevamente realizar el render para apreciar el efecto completo de este envolvente:

4) Snow Field: el envolvente es un campo nevado.

Si realizamos un render con este envolvente activado, el resultado es el siguiente:

Podemos quitar el suelo de nuestro modelo y nuevamente realizar el render para apreciar el efecto completo de este envolvente:

1) Village: el envolvente es un pueblo.

Si realizamos un render con este envolvente activado, el resultado es el siguiente:

Podemos quitar el suelo de nuestro modelo y nuevamente realizar el render para apreciar el efecto completo de este envolvente:

5) Sharp Highlights: el envolvente es una luz que nos genera reflejos agudos, similar a la de un estudio de fotografía (de paraguas).

Si realizamos un render con este envolvente activado, el resultado es el siguiente:

Podemos quitar el suelo de nuestro modelo y nuevamente realizar el render para apreciar el efecto completo de este envolvente:

6) Rim Highlights: el envolvente es una luz que nos permitirá destacar los bordes, similar a la de un estudio de fotografía (cuadradas).

Si realizamos un render con este envolvente activado, el resultado es el siguiente:

Podemos quitar el suelo de nuestro modelo y nuevamente realizar el render para apreciar el efecto completo de este envolvente:

7) Grid Highlights: el envolvente es una luz de cuadrícula, similar a la de un estudio de fotografía.

Si realizamos un render con este envolvente activado, el resultado es el siguiente:

Podemos quitar el suelo de nuestro modelo y nuevamente realizar el render para apreciar el efecto completo de este envolvente:

8) Cool Light: el envolvente es una luz fresca de paneles cuadriculados, similares a las utilizadas en los estudios de fotografía.

Si realizamos un render con este envolvente activado, el resultado es el siguiente:

Podemos quitar el suelo de nuestro modelo y nuevamente realizar el render para apreciar el efecto completo de este envolvente:

9) Warm Light: el envolvente es una luz cálida de paneles cuadriculados, similares a las utilizadas en los estudios de fotografía.

Si realizamos un render con este envolvente activado, el resultado es el siguiente:

Podemos quitar el suelo de nuestro modelo y nuevamente realizar el render para apreciar el efecto completo de este envolvente:

10) Soft Light: el envolvente es una luz tenue de paneles cuadriculados, similares a las utilizadas en los estudios de fotografía.

Si realizamos un render con este envolvente activado, el resultado es el siguiente:

Podemos quitar el suelo de nuestro modelo y nuevamente realizar el render para apreciar el efecto completo de este envolvente:

Además de los envolventes que tenemos disponibles, también podremos colocar uno personalizado mediante la opción Use Custom Background, aunque evidentemente desactivará los envolventes por defecto.

En este caso podremos seleccionar la opción Background (destacado en verde en la imagen siguiente) y nos enviará al panel respectivo, donde podremos asignar un color, un gradiente o una imagen.

En este caso debemos tener cuidado al asignar la imagen, ya que es mejor ajustarla al fondo mediante la opción Scale en lugar de Stretch pues de hacerlo por esta última vía, el fondo completo no será visible en el render sino que más bien dependerá del tamaño de la imagen.

Si realizamos un render con este envolvente activado, el resultado es el siguiente:

Podemos quitar el suelo de nuestro modelo y nuevamente realizar el render para apreciar el efecto completo de este envolvente:

Es importante destacar que si realizamos un envolvente con una imagen personalizada, esta no puede girarse ni adaptarse al modelo ya que siempre quedará de manera estática en el fondo, tal como se aprecia en el siguiente ejemplo:

Exposure

En esta opción podremos ajustar los tonos de “exposición” de la imagen antes de realizar el render, y en este caso tenemos dos tipos:

Exposure: ajusta el nivel de brillo del render mediante Valores de Exposición (Exposure Value) o EV. En este caso, mientras más nos acerquemos a la izquierda el render será más claro o brillante (Bright), mientras que los valores de la derecha harán que nuestro render sea más oscuro (Dark). Los valores mínimos y máximos son:

– Bright (valor mínimo): -6.
– Dark (valor máximo): 21.

Podemos ver ejemplos de la aplicación de Exposure en las siguientes imágenes:

Render con Color Balance en 6.500 (por defecto) y valor de Exposure (EV) en 3.

Render con Color Balance en 6.500 (por defecto) y valor de Exposure (EV) en 5.

Render con Color Balance en 6.500 (por defecto) y valor de Exposure (EV) en 9.

Render con Color Balance en 6.500 (por defecto) y valor de Exposure (EV) en 12.

Render con Color Balance en 6.500 (por defecto) y valor de Exposure (EV) en 16.

White Balance: ajusta los tonos de “blanco” o claros en nuestro render. En este caso puntual los valores a la izquierda nos darán luces más frías (Cool) mientras que los valores de la derecha nos generarán luz cálida (Warm) ya que sus valores se basan en los ya conocidos grados Kelvin (K°). Los valores mínimos y máximos son:

– Cool (valor mínimo): 1.000.
– Warm (valor máximo): 20.000.

Podemos ver ejemplos de la aplicación de White Balance en las siguientes imágenes:

Render con Exposure en 8.8 (por defecto) y valor de Color Balance en 1.000 (valor mínimo).

Render con Exposure en 8.8 (por defecto) y valor de Color Balance en 3.000.

Render con Exposure en 8.8 (por defecto) y valor de Color Balance en 6.000.

Render con Exposure en 8.8 (por defecto) y valor de Color Balance en 9.000.

Render con Exposure en 8.8 (por defecto) y valor de Color Balance en 15.000.

Render con Exposure en 8.8 (por defecto) y valor de Color Balance en 20.000 (valor máximo).

Gracias al buen manejo de estos parámetros, podremos controlar de forma eficaz los tonos y el tipo de iluminación final que tendrá nuestro render ya que no es lo mismo renderizar en un espacio interno o externo, o en un día cálido o frío. Si bien no hay medidas estándar para configurar estos parámetros, se recomiendan los valores medios ya que estos nos definen un render claro y de día más o menos soleado.

Ajustando la calidad del render

Otra de las novedades de AutoCAD es el nuevo cuadro de ajustes de calidad del render llamado Render Preset Manager. Podemos acceder a este mediante el comando Rpref o yendo a la flecha diagonal indicada en la imagen siguiente, en el grupo Render de la persiana Visualize:

Al hacer esto llegaremos al siguiente panel:

En este cuadro podremos definir los siguientes parámetros para nuestro render:

Render in: nos permite definir el área a renderizar. Por defecto se renderiza la ventana completa (Window), pero si elegimos Wiewport el render se realizará en los mismos objetos de la Viewport.

Render del modelo realizado mediante la opción Viewport.

Otra opción interesante es Region, ya que al seleccionarla nos permitirá renderizar sólo un sector o área de la viewport y así testear el render para calcular o ahorrar tiempo en el renderizado final:

Render del modelo realizado mediante la opción Region.

Demás está decir que si realizamos el renderizado mediante las opciones Viewport o Region, no podremos guardar la imagen de forma directa ya que sólo nos sirven para testear el renderizado final de nuestro modelo.

Tip: podremos volver al estilo visual normal luego del renderizado si cambiamos este a cualquier otro estilo distinto al original y luego volverlo a colocar, usando Visual Styles.

Render Size: si renderizamos mediante la opción por defecto Window, Render Size nos permite definir el tamaño de la imagen de nuestro render. A mayor tamaño de imagen mayor tiempo de renderizado, y viceversa. Podremos definir nuestro propio tamaño en la opción More Output Settings.

Current Preset: esta opción nos define configuraciones ya predefinidas de renderizado además de crear configuraciones personalizadas, puesto que podremos copiar alguna de estas (destacada en verde en la siguiente imagen) y editarlas a nuestro antojo utilizando los parámetros de más abajo. Podremos borrar estas mediante la cruz roja.

En este caso disponemos de las siguientes configuraciones predeterminadas:

– Low: la calidad más baja de renderizado. En este caso el renderizado es de un solo nivel.

– Medium: la opción por defecto, y en este caso el render aplica 5 niveles de renderizado.

– High: la calidad más alta de renderizado. En este caso el renderizado es de 10 niveles.

– Coffee-Break Quality: esta calidad nos da un renderizado de 10 minutos de tiempo en lugar de niveles.

– Lunch Quality: esta calidad nos da un renderizado de 60 minutos de tiempo en lugar de niveles.

– Overnight Quality: esta calidad nos da un renderizado de 720 minutos de tiempo (12 horas) en lugar de niveles y es la “mejor” calidad de render disponible, aunque también la más demorosa.

Preset Info: en esta opción podremos asignar un nombre y una descripción a nuestra configuración personalizada de renderizado una vez copiada desde una de las disponibles. Esta configuración guardará TODA la información que configuremos en el cuadro, tal como se aprecia en el ejemplo siguiente:

Render Duration: este es uno de los parámetros más importantes pues podremos determinar la “duración” de nuestro render al crear un preset personalizado. En este caso tenemos las siguientes opciones de configuración:

– Until Satisfactory: en este caso se renderiza hasta que el render se detenga mediante Esc o se cancele. O lo que es lo mismo, “hasta que se esté satisfecho” con el resultado. Esta opción está relacionada con la calidad de los materiales y luces (Lights and Materials).

Render realizado mediante Until Satisfactory y terminado en 1 minuto de tiempo, en calidad Draft.

– Render by Levels: establece los niveles de nuestro render. Por defecto es 5 (medium), pero podremos determinar más o menos niveles que influirán en la calidad final de nuestro render ya que a más niveles tendremos mayor calidad. El máximo de niveles que podremos asignar es 100, pero hará mucho más demoroso el tiempo de renderizado.

Render realizado con 20 niveles y en calidad Draft. Tiempo total de renderizado: 40 minutos.

– Render by Time: la opción más sencilla de todas puesto que en este caso determinamos el tiempo de render de forma exacta ya que podremos definir los minutos que este durará. Esta opción está relacionada con la calidad de los materiales y luces (Lights and Materials).

Render realizado con 5 minutos de tiempo y en calidad Draft.

Lights and Materials: determina el nivel de detalle o de calidad de los materiales y las luces en nuestro render y, según los valores que establezcamos, alargarán o acortarán el tiempo de render y a la vez mejorarán o aminorarán los detalles de las luces y los materiales. En este caso tenemos las siguientes opciones de configuración:

– Low: la calidad más baja y el menor nivel de detalle, pero que genera renders mucho más rápidos.

Render realizado con 5 niveles (por defecto) y en calidad Low.

– Draft: la calidad de borrador o “media”, y la opción por defecto en la mayoría de los casos.

Render realizado con 5 niveles (por defecto) y en calidad Draft.

– High: la calidad más alta y el mejor nivel de detalle, pero genera renderizados muy largos.

Render realizado con 5 niveles (por defecto) y en calidad High.

Como ya se dijo en un momento, no existen configuraciones estandarizadas para definir la “mejor” calidad de un render pues todo dependerá del tipo de proyecto, el cómo esté iluminado y materializado además del entorno o envolvente que escojamos para representar este. Sin embargo, la configuración por defecto del motor de render de AutoCAD es lo suficientemente buena y rápida para generar renderizados con un buen grado de calidad. También debemos tomar en cuenta que existe una relación entre los detalles de luces y materiales y los tiempos o niveles que definamos, aunque de entre los dos tipos de duración de render se recomienda por sobre todo renderizarlos mediante Render by Levels pues con este método en general se logra mejor calidad que mediante Render by Time, aunque eso se traducirá en un mayor tiempo de renderizado.

Este es el fin de este tutorial.

AutoCAD 3D Tutorial 04: Materiales parte 2, creación y mapeo

Cuando modelamos elementos tridimensionales en AutoCAD, por defecto el objeto tendrá un color asignado el cual suele corresponder al color del layer, y nos sirve para visualizar nuestro sólido en la viewport y en el render. Sin embargo, este es un color de base el cual le quita realismo a lo que modelemos, ya que uno de los principales objetivos del modelado en 3D además de poder visualizar en “tres dimensiones” un objeto o un proyecto de Arquitectura, es justamente generar escenas de carácter “fotorealista” o mejor dicho, el emular de la mejor forma posible los efectos atmosféricos, lumínicos, de texturas y otros de la realidad en nuestro modelo, para crear vistas creíbles y lo más reales posibles que puedan imprimirse y presentarse en una imagen 2D o en un video. Para poder lograr hacer esto, primero debemos comprender como la luz interactúa con los objetos que nos rodean. Debemos observar detenidamente los resaltes, colores, reflexiones de todas las cosas que estén en nuestro entorno y también en varios casos, debemos fotografiar o escanear superficies de objetos que después nos puedan servir de referencia o como una futura textura.

Una de las aplicaciones más interesantes en AutoCAD son los llamados materiales. ¿Qué es un material específicamente?. Pues bien, un material es un conjunto de comandos y propiedades específicas que nos sirven para emular los efectos propios de la realidad y aplicarlos en nuestros modelos 3D. Sin embargo, antes de iniciarnos en la aplicación de materiales en AutoCAD, debemos entender el concepto de Renderizado o de Render: este proceso consiste en la generación de imágenes fotorealistas a nuestros modelos 3D en bruto, para poder ser exportados por medio de un archivo de imagen o de video.

Para que esto sea posible, debemos seguir 3 pasos fundamentales los cuales son:

1) Aplicar representaciones virtuales de materiales a los diferentes elementos de un modelo 3D.

2) Generar la ambientación y los efectos atmosféricos necesarios que afectarán directamente al modelo: luces, fondo, niebla, sombras, etc.

3) Generar el renderizado o “Render” definitivo, elegir la calidad de la imagen o video y el formato de salida de estos.

Aunque entender estos conceptos es relativamente fácil, en el proceso de materialización de elementos 3D se requiere de muchos ensayos y muchas horas de práctica para lograr aplicar de forma correcta los materiales, luces y efectos y así lograr resultados satisfactorios, convincentes y realistas.

Por ejemplo, si queremos asignar un material de vidrio a una primitiva 3D redonda como por ejemplo un cilindro, debemos tomar en cuenta que este material tiene ciertas propiedades que deberán ser agregadas como por ejemplo su transparencia, para así lograr un buen efecto. Así como la transparencia, los materiales tienen muchas otras propiedades que nos permiten emular de la mejor forma posible un material de la realidad en el entorno 3D de AutoCAD.

En general, los materiales poseen las siguientes propiedades físicas que pueden ser representadas de forma visual en un modelo 3D de AutoCAD:

– Color.
– Textura.
– Rugosidad.
– Transparencia.
– Reflexión.
– Refracción.
– Relieve.
– Auto iluminación.
– Etc.

Por razones obvias otras propiedades de los materiales como rigidez, resistencia, densidad, maleabilidad y flexibilidad no pueden ser representados en un modelo 3D de AutoCAD, ya que estos por definición son elementos de visualización.

En esta segunda parte del tutorial veremos la edición de materiales en AutoCAD y en particular el Material Global, y aprenderemos a mapear correctamente nuestros materiales en los objetos.

Propiedades Generales de los materiales (Material Global)

Como ya sabemos, los materiales se definen por una serie de propiedades físicas y visuales que le darán a nuestros modelos 3D un aspecto más realista. Las propiedades dependerán del tipo de material seleccionado. Por defecto y por razones obvias, en el programa no es posible modificar los materiales de la biblioteca de materiales de Autodesk (Autodesk Library), sin embargo se pueden utilizar como base para generar nuevos materiales. Si queremos crear materiales desde cero, AutoCAD dispone de un material genérico llamado Material Global, el cual nos permitirá crear prácticamente todos los materiales tipo y por ello es el más indicado para crear materiales propios o editarlo si algún material de la biblioteca de Autodesk no se ajusta a nuestro proyecto.

Los parámetros de propiedades disponibles cambian en función del tipo de material que se está creando o actualizando. Para invocar al Material Global bastará ir al gestor de materiales y mediante doble click, seleccionarlo para ir a los parámetros de edición de este:

Material Global con todas sus propiedades desplegadas.

También podemos acceder al Material Global de AutoCAD si realizamos click con el botón secundario sobre el material y seleccionando la opción edit:

Otras funciones de las que disponemos en este modo son:

– Select Objects Applied To: selecciona en la Viewport los objetos a los que tengamos asignado el material. Por defecto no funciona en el material Global.
– Duplicate: duplica (copia) el material.
– Rename: cambia el nombre a nuestro material, aunque en el material Global por defecto está desactivado.
– Delete: permite borrar el material, aunque en el material Global por defecto está desactivado.
– Add to: permite añadir el material a nuestros favoritos (Favorites), Active Tool Palette o alguna carpeta personalizada.
– Purge All Unused: purga en el panel del usuario todos los materiales que no estemos usando en nuestros objetos.

En el editor de Material Global podremos ver las diferentes propiedades y parámetros de nuestro material para poder editarlo. Lo primero que debemos conocer es cómo este editor funciona:

Lo primero que veremos es la vista previa del material aplicado en un objeto predefinido que en este caso es llamado Object. Podemos seleccionar la flecha del lado derecho del material la cual nos asignará varias funciones respecto a la visualización de este:

Las funciones de visualización son Scene, Environment y Render Settings.

Scene: permite elegir el tipo de objeto en el que se desplegará nuestro material. Por defecto el Material Global se previsualiza en Object, pero mediante esta opción podremos elegir otras formas como un cubo, cilindro, vaso, muro u otro tipo de objetos.

Environment: permite elegir el tipo de envolvente atmosférico en el que será visible nuestro material en la previsualización. Por defecto el Material Global es Grid Light (luz de rejilla), pero mediante esta opción podremos elegir otros envolventes como como Plaza, Snowfield (campo nevado) y Warm Light (luz cálida).

Render Settings: permite elegir la calidad del render en la que será visible nuestro material en la previsualización. Por defecto su calidad es Quick (rápida), pero mediante esta opción podremos elegir otras calidades como Draft (borrador) y Production (producción, la más alta calidad).

Luego tenemos diversas flechas con las propiedades ya mencionadas como Generic o Transparency y si las presionamos, podremos visualizar o no los parámetros de edición de estas. Un aspecto importante de mencionar es que estas al ser propiedades generales, poseen varias subpropiedades y además, estas podrán habilitarse o no mediante el cuadrado del lado de la flecha. Esto activará o desactivará esa propiedad en específico para nuestro material.

En el ejemplo se ha activado la propiedad Reflectivity y apreciamos el impacto de este en la vista previa del Material Global.

El Material Global nos proporciona los siguientes parámetros o propiedades generales:

1) Generic.
2) Reflectivity.
3) Transparency.
4) Cutouts.
5) Self Illumination.
6) Tint.

Finalmente, otro aspecto importante de destacar en el Material Global es que si bien al renderizar y no materializar los objetos se tomará como base el color de su layer, al modificar el Material Global de inmediato este afectará a todos los objetos, independiente de su layer ya que Global es el material base de todos los objetos que no tengan asignado un material.

Material Global con todos los objetos en el layer 0 (por defecto).

Material Global con todos los objetos en un layer específico.

Material Global con una textura cargada y todos los objetos en un layer específico, donde notamos que todos se cargan con la textura independientemente de su layer (a menos que utilicemos Attach by Layer).

Por esto mismo, se recomienda es que antes de proceder a la creación de un material propio, realicemos una copia de Material Global a fin de que lo podemos renombrar como el material que queramos y además sea independiente de este, para que no afecte a todos los objetos por defecto.

Propiedades de Material Global

Las propiedades más importantes del editor del Material Global son:

1) Generic

Este es el parámetro más importante y el único que no puede ser desactivado, puesto que nos define el color y/o el aspecto exterior (textura) de un material. Sus parámetros son:

Color: todo material tiene un color base y por defecto, el Material Global nos indica el color “By Object” (color por objeto o layer). Sin embargo, si clickeamos en la flecha del lado derecho podremos cambiar este parámetro a un color personalizado, el cual afectará a todos los objetos que tengan aplicado el material.

Aplicación de un color personalizado en Generic, donde notamos que este afecta a todos los objetos por igual ya que es el Material Global.

Render del color seleccionado, en una composición 3D.

Debemos mencionar que el color de un material en un objeto es distinto en diferentes zonas de éste. Por ejemplo, si miramos una esfera de color naranjo, el color no es uniforme en ella sino que más bien, las zonas más lejanas de la luz tendrán un tono más oscuro mientras que las más cercanas a esta tendrán tonos más claros. Incluso, si la esfera es muy brillante, la zona de mayor reflejo tiende a parecer de color blanco.

Image (o mapas procedurales): controla el mapa de color difuso base del material. El color difuso o también llamado “diffuse” es el color que un objeto refleja cuando es iluminado por la luz directa (diurna) o la luz artificial. Por ello, en este parámetro podremos agregar una imagen a fin que esta actúe como “textura” determinada para hacer más realista y creíble nuestro material. Para poder elegir una imagen a insertar simplemente hacemos doble click en el área blanca del parámetro image.

Aplicación de una textura en Generic.

Render de la textura ya cargada, en una composición 3D.

Si ya tenemos una imagen asignada, podemos cambiarla simplemente clickeando en el nombre de esta.

Si clickeamos en la flecha del lado derecho podremos cambiar este parámetro a varios tipos de mapas y texturas el cual afectará a todos los objetos que tengan aplicado el material. También podremos editar o eliminar la imagen que hemos asignado ya que se activan los parámetros Edit Image y Remove Image.

En el ejemplo se ha aplicado el Mapa Procedural Checker.

Los mapas complementarios a Image se llaman Mapas Procedurales los cuales se pueden insertar de igual manera que esta, y en el tutorial 05 parte 1 y el tutorial 05 parte 2 nos referimos a estos en particular.

Finalmente, es importante considerar que el color que apliquemos en nuestro material mediante la opción Color (Color o Color By Object) siempre será independiente de la imagen o textura que carguemos.

Image Fade: controla el mezclado entre el color base y la imagen o textura, y por ende sólo funciona cuando esta se carga. Los valores de Fade van desde 0 a 100.

Mientras más bajo sea el valor de Fade más clara o transparente se verá la imagen en el objeto, y viceversa.

En los ejemplos se ha aplicado Fade en 50% en Color By Object y Color respectivamente.

Render de ambos ejemplos.

Glossiness: se refiere al “lustre” o brillo generado por el reflejo de la luz en el color o la textura, y se utiliza para simular una una superficie lustrosa en la cual la zona de máximo reflejo de la luz en el material es pequeña y su color especular es muy claro, e incluso llegando a blanco. En cambio, si el material es menos brillante el reflejo es más grande y por ello el color tiende a ser más cercano al del material original. Por esto mismo, esta opción controla el tamaño de las manchas o zonas de brillo del material, y sólo funciona si tenemos la propiedad Reflectivity activada.

Los valores de Glossiness van desde 0 a 100.

Renders de ejemplo de aplicación de Glossiness en una composición 3D. En la primera imagen se ha aplicado el valor 20 mientras que en la segunda, el valor de Glossiness es 90. En ambos casos se ha activado la propiedad Reflectivity.

En esta propiedad también podremos cargar imágenes y/o mapas procedurales para generar el efecto si presionamos la flecha del lado de Glossiness, tal como se aprecia en las imágenes:

Pasos y Render de ejemplo de aplicación de Glossiness en una composición 3D. Se ha cargado una imagen en la opción, y vemos el efecto en la viewport junto al render resultante. En este caso se ha activado la propiedad Reflectivity para apreciar el efecto final en el render.

Si queremos deshabilitar la carga de imágenes, iremos nuevamente a la flecha y una vez allí elegiremos la opción Slider.

Highlights: mediante esta opción podemos controlar el modo de dispersar los resaltes especulares en el material, y pueden ser de forma metalizada (Metallic) o no metalizada (Non-Metallic). Por defecto se activa la opción Non-Metallic.

Los resaltes de tipo Metallic dispersan la luz de acuerdo con el ángulo de esta en el objeto (anisotrópico) y son del color del material. En cambio, los resaltes de tipo Non-Metallic son del color de la luz que se refleja en el material.

Renders de ejemplo de aplicación de Highlights en una composición 3D. En la primera imagen se ha aplicado el resalte tipo Metallic, mientras que en la segunda el resalte es Non-Metallic. En ambos casos se ha activado la propiedad Reflectivity.

2) Reflectivity

En este parámetro aplicamos y medimos los valores de reflexión del material. La reflexión se define como el rebote o cambio de dirección y sentido de la luz en la superficie de un objeto. Esto genera un reflejo el cual puede ser parcial o casi absoluto, como por ejemplo en el caso de un espejo. Ideal para efectos de vidriado o cristal.

El control Direct nos define el nivel de reflejo en las superficies. Los valores de esta fluctúan entre 0 (sin reflexión) y 100 (reflexión máxima, similar a un espejo).

Renders de ejemplo de aplicación de Reflectivity Direct en una composición 3D. En la primera imagen su valor es 20, mientras que en la segunda su valor es de 100. En ambos casos la opción Oblique está en 0.

El control Oblique nos define la intensidad del resalte especular en las superficies. Los valores de estas fluctúan entre 0 (sin resalte) y 100 (resalte especular máximo).

Renders de ejemplo de aplicación de Reflectivity Oblique en una composición 3D. En la primera imagen su valor es 20, mientras que en la segunda su valor es de 100. En ambos casos la opción Direct está en 0.

En esta propiedad también podremos cargar imágenes y/o mapas procedurales para generar la reflexión, si presionamos la flecha del lado de las opciones Direct y/u Oblique. En este caso, para que los mapas de reflexión funcionen bien, el material debe ser brillante y la propia imagen de reflexión debe tener una resolución alta (al menos 512 x 480 píxeles).

Renders de ejemplo de aplicación de Reflectivity Image en una composición 3D. Se ha cargado una imagen en Direct y Oblique, y vemos el efecto en la viesport junto al render resultante. El valor de Glossiness es 90.

Si queremos deshabilitar la carga de imágenes, iremos nuevamente a la flecha y una vez allí elegiremos la opción Slider.

3) Transparency

Como sabemos, un objeto completamente transparente permite el paso de la luz a través de él y por ello, este parámetro controla el nivel y tipo de transparencia de un objeto. Sus parámetros son:

Amount: controla el nivel de trasparencia general. Mientras más alto sea este valor, el objeto se hace más transparente y visceversa.

Con el valor 0 el material es totalmente opaco, mientras que con el valor 100 es completamente transparente.

Proceso y render de ejemplo de aplicación de Amount en una composición 3D. En este caso, el valor de Amount es 20.

Proceso y render de ejemplo de aplicación de Amount en una composición 3D. En este caso, el valor de Amount es 90.

Image (o mapas procedurales): en este caso podremos cargar una imagen o mapa procedural que emulará la transparencia del objeto, desactivando el parámetro Amount.

Este proceso de carga se realiza igual que como se vió en las propiedades anteriores.

Proceso y render mediante la aplicación de una textura en Amount.

Importante: si el valor de Amount es 0, los objetos desaparecerán de la viewport pero no afectará el resultado en el render. Por lo tanto, se recomienda dejarlo en 1 para que estos sean visibles si cargamos la imagen, tal como se ve en el ejemplo de arriba.

Image Fade: controla el difuminado entre la transparencia y la imagen o textura, y por ende sólo funciona cuando esta se carga. Si el valor de Amount es 100 y el valor de Fade de la imagen es 0, todo será transparente mientras que si Amount es 0 y Fade es 100, se cargará la transparencia de la textura.

Importante: si el valor de ambos es 0 se generarán problemas en el render final.

Proceso y render de ejemplo de aplicación de Fade en una composición 3D. En este caso, el valor de Amount es 100 y el de Fade es 20.

Proceso y render de ejemplo de aplicación de Fade en una composición 3D. En este caso, el valor de Amount es 10 y el de Fade es 80.

Translucency: este parámetro controla el porcentaje de la luz que atraviesa el material o también llamado translucidez. Esto significa que un objeto traslúcido permitirá que parte de la luz pase a través de él y el resto de la luz se disperse en el objeto. Con el valor 0 no hay translucidez mientras que con 100 es la máxima posible. También podremos cargar una imagen o mapa procedural para generar este efecto si presionamos la flecha del lado derecho, cargándola de la misma forma vista antes.

Esta opción es ideal para ciertos efectos de vidriado o también para realizar cristal escarchado.

Render de ejemplo en una composición 3D, con el valor de Traslucency en 20 y Amount en 80.

Render de ejemplo en una composición 3D, con el valor de Traslucency en 100 y Amount en 80.

Render de ejemplo en una composición 3D, con el valor de Traslucency en 20 y una imagen cargada con Fade en 100.

Render de ejemplo en una composición 3D, con el valor de Traslucency en 100 y una imagen cargada con Fade en 100.

Proceso y Render de ejemplo en una composición 3D, pero esta vez se ha cargado una imagen en Translucency. En este último caso se ha activado Index of Refraction.

Index of Refraction: corresponde al índice de refracción o IOR, y por ello este parámetro controla el grado en el que los rayos de luz se curvan al atravesar el material y generan distorsión en el aspecto de los objetos al otro lado de este. Este índice varía según el material que queramos emular, y los valores por defecto que podemos seleccionar en esta opción son los siguientes:

– Air (aire): 1,00 (no hay distorsión).
– Water (agua): 1,33.
– Alcohol: 1,36.
– Quartz (cuarzo): 1,46.
– Glass (vidrio): 1,52.
– Diamond (diamante): 2,30.
– Custom (personalizado): podemos definir un valor personalizado.

Render con Index of Refraction de Air (aire) con el valor 1,00.

Render con Index of Refraction de Water (agua) con el valor 1,33.

Render con Index of Refraction de Glass (vidrio) con el valor 1,52.

Render con Index of Refraction de Diamond (diamante) con el valor 2,30.

Según el material que queramos emular podremos primeramente buscar el índice de refracción de este y luego colocar su valor en la opción Custom.

4) Cutouts

Este parámetro proporciona un efecto de transparencia en el material basado en la interpretación de la escala de grises de una textura. Por esto mismo, debemos saber que en el caso de Cutouts siempre debemos utilizar dos imágenes:

a) la primera imagen es la original con el contorno y la o las zonas que se transparentarán. Estas últimas preferentemente deben de color plano (idealmente blanco).

b) la segunda imagen determinará el o los contornos que serán visibles en color blanco puro, mientras que las zonas a transparentar serán totalmente negras.

Estos dos tipos de imágenes pueden ser visualizadas en el siguiente ejemplo:

 

En el ejemplo, la primera imagen es la original y el fondo blanco es la zona a transparentar, mientras que la segunda contiene el contorno e interior del arbusto en blanco mientras que su fondo es totalmente negro. La segunda imagen se conoce como “imagen cutouts” o “imagen opacity”.

Cuando cargamos la imagen en Cutouts, debemos tener en cuenta que en Generic cargaremos la imagen original mientras que en la propiedad Cutouts cargaremos la imagen opacity o “negativo”, tal como se aprecia en el siguiente ejemplo:

Ejemplo de aplicación de Cutouts en una composición 3D. En este caso se ha cambiado el fondo del segundo render para mostrar el efecto de la transparencia del arbusto. Nótese las sombras proyectadas las cuales respetan la forma de la imagen.

Cutouts es una de las propiedades más importantes de un material, pues nos permite crear efectos específicos que nos ahorrarán tiempo de renderizado y memoria, como por ejemplo una zona completa de rejillas o árboles 2D planos, ya que esta propiedad respeta la sombra de los contornos. Otra cosa importante es que si tenemos degradado u otro tipo de imagen opacity que los contenga, notaremos que las zonas claras se renderizarán opacas mientras que las más oscuras se transparentarán de forma gradual.

El mismo ejemplo anterior pero esta vez se ha aplicado el mapa procedural Gradient en Cutouts, donde apreciamos claramente la transparencia gradual de la imagen original.

Un segundo ejemplo donde podemos apreciar la creación de rejillas gracias a Cutouts.

El mismo ejemplo anterior pero sólo se ha cargado la imagen Cutouts, mientras que en Generic no hay imagen cargada (sólo layers).

5) Self-Ilumination

Este parámetro corresponde a la autoiluminación de un objeto. Este simula una iluminación interior de este (similar a una lámpara de mesa o una ampolleta, por ejemplo) sin necesidad de usar una fuente de luz externa, aunque esta luz no afecta a los objetos adyacentes a él. Sus parámetros más importantes son:

Filter Color: esta opción nos crea el efecto de un filtro de color sobre la superficie iluminada.

Por defecto este es de color blanco, pero podremos cambiar el color al que queramos. También podremos cargar una textura o mapa procedural para emular este efecto si presionamos la flecha del lado derecho, cargándola de la misma forma vista antes.

Render normal de una composición 3D, sin Self-Illumination aplicado.

Render de una composición 3D con Self-Illumination aplicado y Filter Color de color blanco (por defecto).

Render de una composición 3D con Self-Illumination aplicado y Filter Color de color rojo. En este caso el color de todos los objetos es Blanco, para apreciar mejor el efecto.

Render de una composición 3D con Self-Illumination aplicado y Filter Color de color azul. En este caso el color de todos los objetos es Blanco, para apreciar mejor el efecto.

Render de una composición 3D con Self-Illumination, filter color naranjo y el luminance Lamp Shade Exterior aplicados en la esfera y el torus. En este caso el color de todos los objetos es blanco, para apreciar mejor el efecto.

Render de una composición 3D con Self-Illumination aplicado y el mapa procedural Checker cargado. En este caso el color de todos los objetos es crema, para apreciar mejor el efecto.

Luminance: corresponde a la luminancia, la cual nos permite simular un material iluminado en una fuente de luz fotométrica. La cantidad de luz emitida se indica mediante un valor seleccionado el cual está en unidades fotométricas. En Luminance disponemos de las siguientes opciones:

– Dim Glow (resplandor tenue): 10.

– LED Panel (panel LED): 100.

– LED Screen (pantalla LED): 140.

– Cell Phone Screen (pantalla de teléfono celular): 200.

– CRT Television (televisión CRT antigua): 250.

– Lamp Shade Exterior (lámpara exterior): 1.300.

– Lamp Shade Exterior (lámpara interior): 2.500.

– Desk Lamp Lens (lámpara de escritorio): 10.000.

– Halogen Lamp Lens (lámpara halógena): 10.000.

– Frosted Bulb (bulbo esmerilado): 210.000.

– Custom (valor personalizado).

Luminance custom con valor 700.

Color Temperature: esta opción nos define la “temperatura” o mejor dicho, el color de la autoiluminación. En este caso, la temperatura definirá si nuestra luz es cálida o fría ya que los valores se expresan en grados Kelvin (K°). Color Temperature dispone de las siguientes opciones:

– Candle (vela): 1.850.

– Incandescent Bulb (bulbo incandescente): 2.800.

– Floodlight (luz inundada): 3.400.

– Moonlight (luz de luna): 4.100.

– Daylight Warm (luz de día cálida): 5.000.

– Daylight Cool (luz de día fría): 6.000.

– Xenon Arc Lamp (lámpara de Xenón): 6.420.

– TV Screen (pantalla de TV): 9.320.

– Custom (valor personalizado).

Color Temperature Custom con valor 1.000.

Color Temperature Custom con valor 20.000.

El valor por defecto de Color Temperature es 6.500 K°. Valores menores de K° generarán luz cálida mientras que los valores mayores generarán luz fría, tal como de aprecia en los ejemplos de arriba.

6) Bump

Esta propiedad nos permite generar el efecto de relieve para el material. Para ello, este parámetro agrega una imagen o mapa procedural que genera un efecto de relieve o rugosidad en la superficie del material de manera similar a como se hace con Cutouts, aunque a diferencia de este la imagen “bump” o de relieve es la misma original pero en escala de grises, ya que esta es más eficiente a la hora de simular el efecto. Esto se puede ejemplificar mediante las siguientes imágenes:

Imagen de la textura original y la imagen “bump” de esta, en escala de grises.

Su único parámetro es el siguiente:

Amount: nos permite controlar la intensidad y/o grado del relieve. Sus valores van desde -1.000, pasando por 0, hasta 1.000.

Los valores superiores generarán un relieve alto y los valores negativos invierten el relieve. El valor 0 lo desactiva.

Render normal de una composición 3D con el valor de Amount en 0.

Render normal de una composición 3D con el valor de Amount en 600.

Acercamiento del mismo render anterior para apreciar el efecto de Bump.

Si bien Bump nos genera un efecto de relieve, debemos tomar en cuenta que este efecto de por sí es limitado debido a que no afecta la superficie del objeto y que no puede generar efectos de sombreado sobre sí mismo. Por lo tanto, si se quiere mayor profundidad en un objeto, esta deberá generarse mediante técnicas de modelado.

7) Tint

Esta propiedad es el “tinte” y tiene por objeto teñir el material mediante un color de base, y sólo tiene como parámetro Tint Color.

Podemos cambiar este color base haciendo doble click en este y luego elegir el color que queramos. El efecto será visible tanto en la viewport como en el render, tal como se aprecia en el siguiente ejemplo:

Ejemplo de aplicación de Tint en una composición 3D.

Como conclusión final, el Material Global de AutoCAD nos permitirá realizar una multitud de efectos y está diseñado para crear prácticamente cualquier material desde cero, con la ventaja que podremos generar materiales bastante diversos e incluso raros, ya que podremos trabajar con todas las propiedades activadas al mismo tiempo, tal como el ejemplo siguiente:

Configuración y render de un material generado mediante la activación de casi todas las propiedades (sólo no se ha utilizado la propiedad Cutouts).

Manejando la asignación de materiales

Si bien ya hemos conocido las propiedades de Material Global y de los materiales en general, debemos saber que al ser archivos imagen, las texturas estarán limitadas por el tamaño de estas y por ende, mientras menos resolución tenga la imagen menor será la calidad del material en el render. Otro factor importante a considerar es la escala que generan estas en el objeto, ya que dependiendo de la unidad en la que estemos realizando el modelo las texturas no siguen un tamaño estandarizado, sino que su visualización dependerá más bien del tamaño de esta y del objeto que modelamos. Esto puede graficarse en el siguiente ejemplo:

Render de la textura en una composición 3D, esta última fue realizada en cms.

Render de la textura de la misma composición 3D, pero esta última se ha escalado 10 veces más pequeña que la original.

Por esto mismo es que debemos ajustar la escala e incluso la rotación de una textura mediante los parámetros de Mapeo. El Mapeo o “Mapping” de una textura es una función que define el tipo de distribución de esta en las caras de un objeto. Los parámetros de mapeo y opciones de visualización de la textura aparecen aparecen en el menú Visualize (Render), en el grupo llamado materials. En este panel tenemos lo siguiente:

1) Materials Browser: activa el editor de materiales ya visto.

2) Material/Textures On: activa o desactiva las propiedades de los materiales y/o la textura en la vista o viewport según se necesite. En este parámetro disponemos de tres opciones:

a) Material/Textures Off: desactiva las texturas y las propiedades de los materiales.
b) Material On/Textures Off: desactiva sólo las texturas, pero activa el resto de las propiedades del material.
c) Material/Textures On: activa las texturas y las propiedades del material.

También podemos invocarlo mediante el comando vsmaterialmode o vsmat. En este caso nos aparecerá en la barra de comandos y se nos pedirá un valor numérico para las tres opciones.

Los valores numéricos de estas son:

a) Material/Textures Off: 0.
b) Material On/Textures Off: 1.
c) Material/Textures On: 2.

3) Material Mapping: nos define el modo en que se distribuye la textura o el mapa procedural en una forma 3D determinada. Podemos invocarlo presionando en Material Mapping o escribiendo en la barra de comandos materialmap. Luego, elegimos mediante click el objeto y finalmente presionamos enter para aplicar el mapa.

Al aplicar los mapas en las geometrías 3D de AutoCAD, por defecto se asociarán a ella según los siguientes modos:

a) Planar: el mapa 2D se proyectará mediante un plano horizontal en la forma 3D. Por esto mismo es que las superficies que estén en paralelo con las vistas Top y Bottom se verán de forma correcta, mientras que el resto se verán estiradas en vertical.

b) Box: el mapa 2D se proyectará en forma de caja (cada textura se proyecta en una cara de esta) en la forma 3D, es el mapa por defecto y por ello es el más utilizado y recomendable por su versatilidad, ya que nos permite mapear prácticamente la totalidad de las formas 3D.

c) Cylindrical: el mapa 2D se proyectará mediante un cilindro (la textura se proyecta a lo largo del perímetro y dos planos extras para las bases del cilindro) en la forma 3D. por esto mismo es que las caras paralelas a Top y bottom se verán de formas correcta, mientras que en el resto se verá una sola textura estirada hacia los lados.

d) Spherical: el mapa 2D formará una esfera y se proyectará de esa forma en el elemento 3D.

Si invocamos el mapeado mediante materialmap, nos aparece lo siguiente en la barra de comandos:

Donde podremos aplicar los mapas anteriores mediante las iniciales de estos (Box, Planar, Sphere, Cylindrical) y además podremos acceder a las opciones CopY Mapping to y Reset Mapping, que veremos más adelante. Si aplicamos un mapa, nos aparecen las opciones de edición de este: MoveRotate y SWitch Mapping Mode.

Los mapeados pueden editarse según lo queramos para ajustar las dimensiones de las texturas o rotarlas si es necesario. Para ello, bastará aplicar un mapa a un objeto y observar las flechas azules que se nos indica en el mapa.

En el ejemplo se ha aplicado el mapa Box en la primitiva. Una de las flechas de edición se destaca en el círculo verde.

En el ejemplo anterior notamos que alrededor del mapeado las flechas se distribuyen a los lados y en la altura, si las seleccionamos y arrastramos con el mouse podremos editar los parámetros del mapa como por ejemplo definir el alto, largo y ancho de la textura:

En el ejemplo se ha modificado la longitud de las caras del mapa Box en la primitiva, mediante el movimiento de las flechas.

También tenemos más opciones de edición de la textura en la barra de comandos ya que notaremos que también existen dentro del comando materialmap las opciones de Mover (Move), Rotar (Rotate), Cambiar el tipo de mapeado (SWitch Mapping Mode) o volviendo al mapa por defecto reseteando el mapeado existente (ReseT).

En el ejemplo se mueven en el plano XY las caras del mapa Box en la primitiva, mediante la opción Move.

En el ejemplo se rotan las caras del mapa Box en la primitiva, mediante la opción Rotate.

En el ejemplo se vuelve a la configuración original del mapa Box en la primitiva, mediante la opción Reset.

En el ejemplo se cambia al mapa Cylindrical en la primitiva, mediante la opción Switch Mapping Mode.

En algunos tipos de mapeado (como planar o Cylinder) notaremos que existen líneas y/o curvas de color verde, esto nos indica el Seam o costura (destacado en rojo en la imagen siguiente) y esto no es más que el inicio y el fin de una textura determinada:

Por esto mismo es recomendable que las texturas sean del tipo trama, es decir, que puedan repetirse ilimitadamente sin distorsiones (de forma similar a un hatch o a una hilera de ladrillos) para eliminar esta costura y darle continuidad a la textura.

Además de las opciones de mapping, tenemos otros comandos de mapeado que son:

4) Remove Materials: si hemos asignado un material distinto del Material Global esta opción remueve el material de la forma 3D, volviendo al Material Global.

También podemos invocarlo en la barra de comandos mediante materialassign, luego seleccionar el objeto con click y luego presionando enter.

5) Attach by Layer: esta opción nos permite asignar un material ya definido en el panel de usuario a un layer determinado. Este puede ser basado en el material Global o predeterminado de AutoCAD (Autodesk Library). Por defecto, todos los layers están asignados al material Global.

Tambien podremos invocarlo en la barra de comandos mediante materialattach. Cuando lo ejecutamos, se abrirá el cuadro Material Attachment Options el cual contiene los materiales en el lado izquierdo y los layers de nuestro modelo en el derecho:

Cuadro Material Attachment Options sin materiales asignados, y su resultado en pantalla.

Si arrastramos un material hacia cualquier layer este se asignará de inmediato a este. Podremos quitar ese material del layer si presionamos la cruz roja que se encuentra a la derecha del material del layer, por lo cual volverá al material por defecto (Material Global).

Arrastrando un material a un layer en el cuadro Material Attachment Options, y su resultado en pantalla.

Lo interesante de este comando es que si modelamos cualquier forma 3D que esté asociada a ese layer, automáticamente tendrá asignado ese material.

El mismo ejemplo anterior pero en este caso se ha modelado una nueva Box, la cual está asociada al layer que está con el material asignado mediante Attach by Layer.

6) Copy Mapping Coordinates: si hemos editado las dimensiones de la textura en un objeto 3D cualquiera, esta opción nos permite copiar estas coordenadas de escala o de “mapeo” a otra forma 3D, tenga esta o no el mismo material aplicado.

También podremos invocarlo en la barra de comandos mediante materialmap ya que este es un subcomando de este, y se llama CopY Mapping to. Para ejecutarlo, una vez invocado el comando primeramente seleccionamos el objeto fuente (con las coordenadas a copiar), luego elegimos el objeto en el que queremos copiar las coordenadas y finalmente presionamos enter, así las coordenadas del primero serán copiadas al segundo, tal como se ve en el siguiente ejemplo:

En el ejemplo, se ha editado el material de la primera caja y luego sus coordenadas se han copiado a la segunda mediante Copy Mapping Coordinates.

7) Reset Mapping coordinates: si ya editamos las coordenadas de mapeo, al seleccionar esta opción volveremos a las coordenadas de mapeo por defecto. También podremos invocarlo en la barra de comandos mediante materialmap ya que este es un subcomando de este, y se llama Reset Mapping.

Para ejecutarlo, una vez invocado el comando seleccionamos la forma y luego presionamos enter. Con esto volveremos a las coordenadas por defecto del material al ser insertado en el objeto, tal como se ve en el siguiente ejemplo:

En el ejemplo, se ha editado el material de la caja y luego sus coordenadas han vuelto a las dadas por defecto al insertar el material en ella mediante Reset Mapping.

Como conclusión final, la creación de materiales propios en AutoCAD requerirá el conocimiento de todas las propiedades físicas y visibles del material que queramos realizar para replicarlo en AutoCAD utilizando las limitadas propiedades de Material Global además de muchas pruebas de ensayo y error, y de constantes renderizados para lograr el efecto deseado. En cuanto a Mapping, este será fundamental para determinar la escala aproximada para dar realismo a nuestros modelos 3D, y evitar desproporciones posteriores al realizar el renderizado final de nuestro proyecto.

Este es el fin de este tutorial. Puede hacer click en este enlace para ir al tutorial sobre Mapas Procedurales.

AutoCAD 3D Tutorial 05: Mapas Procedurales parte 2, Speckle a Wood.

En el tutorial anterior acerca de materiales vimos una introducción a estos, los aplicamos en los objetos 3D y además aprendimos a crear un material basándonos fundamentalmente en el Material Global. Sin embargo, si hemos explorado con detención el editor de materiales o Material Browser, nos daremos cuenta que en varias propiedades de ciertos materiales (como Generic) y en el Material Global nos aparecen más opciones además de la inserción de una imagen o textura. Estas opciones anexas a la imagen son las que conocemos como mapas procedurales. Estos se definen como mapas de texturas 2D y 3D que vienen predeterminadas en el programa y nos ayudan a dar diferentes efectos a ciertos parámetros de nuestro material como por ejemplo, Reflectivity y Transparency. Como ya sabemos de antemano, los efectos de nuestros materiales dependerán en gran medida de los mapas o imágenes que configuremos en cada propiedad del material, por lo que nos conviene realizar varias pruebas hasta lograr el resultado esperado. En este tutorial veremos los mapas procedurales y sus principales parámetros de edición, que en gran parte comparten con los del editor de materiales.

Editor de mapas procedurales

Para invocar al editor de mapas procedurales primero debemos ir al editor de materiales, y en particular editar el Material Global. Si marcamos todos sus parámetros a excepción de Tint, notaremos que en varios de estos encontraremos flechas hacia abajo, lo cual quiere decir que desde allí podremos tanto insertar imágenes como también invocar a los mapas procedurales.

Por ejemplo, si clickeamos la flecha que está a la derecha del parámetro image de Generic y seleccionamos la opción Image, se nos abrirá la ventana donde se nos pedirá la ruta para adherir una nueva imagen la cual se convertirá en la textura del material o del parámetro que queramos modificar, de la misma manera en que agregamos la textura de la forma tradicional.

Sin embargo también tenemos otras opciones anexas las cuales son los llamados Mapas Procedurales. Estos mapas son los siguientes:

a) Checker.
b) Gradient.
c) Marble.
d) Noise.
e) Speckle.
f) Tiles.
g) Waves.
h) Wood.

La función de estos mapas es generar y/o complementar efectos adicionales para nuestros materiales ya que estos poseen propieades similares, y también nos ayudan a simplificar el proceso de texturización ya que estos son relativamente fáciles de configurar. Incluso, los mapas procedurales también pueden utilizarse como materiales en algunos casos puntuales.

En esta segunda y última parte del tutorial abarcaremos desde el mapa Speckle hasta el mapa Wood.

e) Speckle

Este mapa nos genera un efecto de salpicado, similar al granizado o al estuco. El resultado de la aplicación del mapa Speckle en una composición 3D es el siguiente:

Y un render tipo del mapa es el siguiente:

Si clickeamos en la palabra edit que está debajo de la imagen de Speckle, accederemos a un nuevo panel de edición donde podremos editar los parámetros de este mapa.

Los parámetros que podremos editar son los siguientes:

Appearance

– Color 1/Color 2: podremos elegir el color de los mapas que forman el salpicado si hacemos click en la zona coloreada. Si presionamos la flecha del lado también podremos editar el color o invertir los colores mediante la opción Swap Colors.

En el ejemplo vemos la aplicación del cambio de colores en el mapa de Marble y además la opción Swap Colors.

Size: controla el tamaño del salpicado. Por defecto, el valor de la escala del salpicado es 0,04.

En el ejemplo, el valor del parámetro Scale es 60.

Transforms

– Link Texture Transforms: cuando esta opción está activada, todos los cambios realizados en los parámetros de escala, posición y repetición de este atributo se propagarán a todos los demás atributos en el material que usa una textura.

– Position, Offset X, Y y Z: desplaza la textura respecto al objeto en X, Y o Z según se haya definido. En este caso al ser un mapa en 3D, podremos modificar la posición de los 3 ejes por separado.

– XYZ Rotation: con este parámetro rotamos la textura respecto al origen en cualquiera de los 3 ejes. De todos modos, al ser un mapa 3D no rotará la textura completa respecto al objeto.

f) Tiles

Este interesante mapa nos permite emular de forma más o menos convincente pisos entramados ya sean bloques, baldosas, pavimentos o ladrillos ya que cuenta con varios diseños y tipologías de estos. El resultado de la aplicación del mapa Tiles en una composición 3D es el siguiente:

Y un render tipo del mapa es el siguiente:

Si clickeamos en la palabra edit que está debajo de la imagen de Tiles, accederemos a un nuevo panel de edición donde podremos editar los parámetros de este mapa.

Los parámetros que podremos editar son los siguientes:

Pattern

– Pattern type: nos muestra los diseños y/o tipos de aparejos los cuales son los siguientes:

1) Running Bond: es el tradicional aparejo de ladrillos de tipo soga, tizón o pandereta.

2) Common Flemish Bond: este tramado corresponde al aparejo flamenco, es similar al tramado inglés.

3) English Bond: este tramado corresponde al clásico tramado de tipo inglés.

4) 1/2 Running Bond: es el tradicional aparejo de ladrillos (soga) pero en lugar de estar apilados por el medio están por el “cuarto” del ladrillo que está debajo.

5) Stack Bond: esta trama corresponde al clásico tramado de baldosas, y es el que aparece por defecto al agregar el mapa.

6) Fine Running Bond: corresponde a un aparejo similar a Running pero de tipo refinado, el cual es perfecto para utilizar en pavimentos.

7) Fine Stack Bond: corresponde a un aparejo similar a Stack Bond pero de tipo refinado, el cual es perfecto para utilizar en pavimentos.

8) Custom: nos permite configurar un tipo personalizado de aparejo, basándode en el último tipo de trama que hemos elegido. Por defecto nos aparecerá la trama Stack Bond. Las opciones de Custom son las siguientes:

– Tile Count: nos permite dar el número de divisiones a la trama. Podemos definir el tamaño en la fila (Row) o la columna (Column), lo cual afectará el resultado final de nuestro aparejo.

Ejemplo de aplicación de Tile Count en una composición 3D.

Tile Appearance (apariencia del azulejo)

– Tile Color: en este parámetro podemos definir el color del azulejo. Si clickeamos la flecha del lado derecho podremos en lugar del color podemos agregar una textura o los diversos mapas como Checker, Marble, etc.

Ejemplo de aplicación de Tile Color en una composición 3D.

Un aspecto interesante de Tile Color es que si cargamos una imagen o mapa procedural, nos aparecerán los parámetros de edición de estos los cuales obviamente podremos manejar a nuestro gusto para un mejor resultado:

El mismo ejemplo anterior pero esta vez se ha cargado una imagen, y su resultado en pantalla.

El mismo ejemplo inicial pero esta vez se ha cargado el mapa Marble, y su resultado en pantalla.

Otro aspecto a destacar es que también podremos volver al tramado si presionamos la flecha que se encuentra al lado de la ruta de la imagen o el mapa procedural cargado, de forma similar a 3DSMAX:

– Color Variance: este es un parámetro muy interesante pues permite controlar la variación de color de los azulejos mediante variaciones aleatorias. Este rango varía entre 0 y 100.

– Fade Variance: este parámetro controla la variación del difuminado de los azulejos. Este rango varía entre 0 y 100.

– Randomize: aplica aleatoriamente patrones de variación de color a los azulejos.

Ejemplo de aplicación de los tres parámetros anteriores, en una composición 3D.

Grout Appearance (apariencia de la línea de gruta)

– Grout Color: En este parámetro podemos definir aspectos como el color de la línea. Si clickeamos la flecha del lado derecho podremos en lugar del color podemos agregar una textura o los diversos mapas como Checker, Marble, etc de la misma forma que con Tile Color.

Ejemplo de aplicación de Grout Color en una composición 3D.

Ejemplo de aplicación de Grout Color en una composición 3D, pero esta vez colocando una imagen.

– Gap Width: Controla la separación de las líneas tanto de forma vertical como horizontal. Si clickeamos en la cadena, el valor de ambos será el mismo.

Ejemplo de aplicación de Gap Width en una composición 3D.

– Roughness: Controla el nivel de rugosidad en la difusión de las líneas causando que estas se difuminen hasta casi desaparecer. Este rango varía entre 0 y 200.

Ejemplo de aplicación de Roughness en una composición 3D, junto con la resultante en la vista previa.

Stacking Layout (configuración del aparejo)

Este modo sólo aparece si seleccionamos el aparejo de tipo personalizado o Custom, y nos sirve para definir los atributos de la apilación de nuestra trama. Mediante Line Shift podremos controlar el movimiento lineal de las líneas y mediante Random la aleatorialidad del desplazamiento de estas.

Ejemplo de aplicación de Stacking Layout en una composición 3D, junto con la resultante en la vista previa.

Row Modify: Este modo está desactivado en las tramas tipo Stack o Running (podemos activarlos si queremos), y está habilitado en los otros tipos ya que nos permite modificar las subdivisiones de las filas del entramado. Sus parámetros son:

– Every: podemos controlar a cuántas filas se encuentra la subdivisión respectiva de aparejos.

– Amount: controla la anchura de los azulejos en la subdivisión respectiva de cada fila afectada.

Ejemplo de aplicación de Row Modify en una composición 3D, en base a la trama por defecto Stack Bond.

Column Modify: Este modo está desactivado en las tramas tipo Stack o Running (podemos activarlos si queremos), y está habilitado en los otros tipos ya que nos permite modificar las subdivisiones columnas del entramado. Sus parámetros son:

– Every: podemos controlar a cuántas columnas se encuentra la subdivisión respectiva de aparejos.

– Amount: controla la altura de los azulejos en la subdivisión respectiva de cada columna afectada.

Ejemplo de aplicación de Column Modify en una composición 3D, en base a la trama por defecto Stack Bond.

Transforms

– Link Texture Transforms: cuando esta opción está activada, todos los cambios realizados en los parámetros de escala, posición y repetición de este atributo se propagarán a todos los demás atributos en el material que usa una textura.

– Position, Offset X/Y: esta opción puede apreciarse mejor si desactivamos si la repetición o tile en X e Y del mapa. De manera similar al comando Offset de AutoCAD, Offset desplaza la textura de este respecto al objeto en X(U) o Y(V) según el valor que se haya definido previamente.

Si presionamos el ícono de la cadena, el valor de Offset será el mismo para ambos ejes.

En el ejemplo se ha definido un offset en X e Y igual a 100, eliminando la opción tiles en el mapa para ver el resultado.

Rotation: este parámetro nos permitirá rotar la textura del mapa respecto a su posición inicial la cual por defecto es 0°. Por ende, los valores de rotación variarán entre 0º y 360º.

En el ejemplo se ha rotado la textura en 45° mediante la opción Rotation.

Scale: Nos indica la escala o el tamaño de la textura del mapa. Como es un mapa en dos dimensiones, nos pedirá el valor de Width (largo) y de Height (alto), lo que implica que no necesariamente los módulos de Checker deban ser cuadrados.

Si presionamos el ícono de la cadena, el valor será el mismo para ambos.

En el ejemplo se ha modificado el tamaño de la textura a 600 en ambos lados, mediante la opción Scale.

Repeat: nos indica el tipo de repetición del mapa. Si activamos None solamente repetirá por única vez la textura del mapa, en cambio si activamos Tile la textura se repetirá a lo largo y/o a lo ancho de forma infinita.

En horizontal, la textura se repetirá en torno al eje X(U) mientras que que en vertical lo hará en torno al eje Y(V).

En el ejemplo se ha colocado la opción Tile en horizontal, mientras que en vertical se ha colocado la opción None.

En el ejemplo se ha colocado la opción Tile en vertical, mientras que en horizontal se ha colocado la opción None.

g) Waves

Este mapa 3D nos genera un efecto similar al de las ondas. El resultado de la aplicación del mapa Waves en una composición 3D es el siguiente:

Y un render tipo del mapa es el siguiente:

Si clickeamos en la palabra edit que está debajo de la imagen de Waves, accederemos a un nuevo panel de edición donde podremos editar los parámetros de este mapa.

Los parámetros que podremos editar son los siguientes:

Appearance

– Color 1/Color 2: podremos elegir el color de los mapas que forman las ondas si hacemos click en la zona coloreada. Si presionamos la flecha del lado también podremos editar el color o invertir los colores mediante la opción Swap Colors.

– Distribution: permite elegir la distribución del mapa, esta puede ser en 2D (circular) o 3D (esférica).

Ejemplo de aplicación de Color en una composición 3D.

Waves

Waves nos permite editar las ondas en sí, y los parámetros son los siguientes:

– Number: define la cantidad de ondas utilizadas en la trama y su rango varía entre 1 y 50. Por ejemplo, si quisiéramos simular agua calma debemos asignar un número bajo. Por defecto es 3.

– Len Min: define el intervalo mínimo de cada centro de la onda. Si los valores son menores las ondas se mostrarán de forma regular y si son mayores estas se mostrarán menos regulares.

– Len Max: define el intervalo máximo de cada centro de la onda. Si los valores son menores las ondas se mostrarán de forma regular y si son mayores estas se mostrarán menos regulares.

– Amplitude: nos permite controlar la magnitud de onda. Su valor varía entre 1 y 10.000.

En el ejemplo el valor de Amplitude es 2, y se muestra junto al render.

– Phase: desplaza el patrón de la onda. Su valor varía entre 1 y 10.000.

En el render de ejemplo el valor de Phase es 10.000.

– Random Seed: este valor permite cambia los patrones de las ondas para el caso que esta trama se utilice como emulador de agua o para lograr otros efectos. Su valor máximo es 65.000.

En el render de ejemplo el valor de Random Seed es 65.000.

Transforms

Link Texture Transforms: cuando esta opción está activada, todos los cambios realizados en los parámetros de escala, posición y repetir (tile) se propagarán a todos los atributos del material que utilicen una textura.

Position: Offset X, Y y Z: si la repetición o tile no está activada, desplaza la textura respecto al objeto en X, Y o Z según se haya definido. En este caso al ser un mapa en 3D podremos modificar la posición de los 3 por separado.

Rotation: con este parámetro rotamos la textura respecto al origen en cualquiera de los 3 ejes.

h) Wood

Este mapa 3D nos da un efecto de tipo madera. El resultado de la aplicación del mapa Wood en una composición 3D es el siguiente:

Y un render tipo del mapa es el siguiente:

Si clickeamos en la palabra edit que está debajo de la imagen de Wood, accederemos a un nuevo panel de edición donde podremos editar los parámetros de este mapa.

Los parámetros que podremos editar son los siguientes:

Appearance

– Color 1/Color 2: podremos elegir el color de los mapas que forman el salpicado si hacemos click en la zona coloreada. Si presionamos la flecha del lado también podremos editar el color o invertir los colores mediante la opción Swap Colors.

Ejemplo de aplicación de Color en una composición 3D.

– Radial Noise: Controla la aleatoriedad del grano de la madera, en torno al radio del mapa (plano perpendicular a este).

– Axial Noise: Controla la aleatoriedad del grano de la madera, en torno al eje del mapa (plano paralelo a este).

Render de una composición 3D con los valores por defecto de Wood.

El mismo ejemplo antrerior pero se han ajustado los parámetros de Axial y Radial Noise. Se ha aumentado el valor de Grain Thickness para apreciar mejor el efecto.

– Grain Thickness: aumenta el grosor del grano de la madera, y su valor va desde 0 a 100.

Render con el valor de Grain Thickness por defecto (0,5).

El mismo ejemplo pero esta vez con el valor de Grain Thickness en 20, y el render de este.

Transforms

Link Texture Transforms: cuando esta opción está activada, todos los cambios realizados en los parámetros de escala, posición y repetir (tile) se propagarán a todos los atributos del material que utilicen una textura.

Position: Offset X, Y y Z: si la repetición o tile no está activada, desplaza la textura respecto al objeto en X, Y o Z según se haya definido. En este caso al ser un mapa en 3D podremos modificar la posición de los 3 por separado.

Rotation: con este parámetro rotamos la textura respecto al origen en cualquiera de los 3 ejes.

Como acabamos de apreciar, los mapas procedurales pueden ayudarnos a simplificar el proceso de materialización de un objeto y a su vez pueden generar efectos diversos e interesantes según donde estos de apliquen, ya que al crear un material siempre tendremos la opción de agregar estos mapas en los diferentes parámetros del material Global o también en ciertos materiales estandarizados de AutoCAD. Podemos apreciar esto en el siguiente ejemplo:

En el ejemplo se ha aplicado el mapa Speckle en Generic, el mapa Tiles en Reflectivity, el mapa Waves en Transparency y el mapa Wood en Self-Illumination del material Global, y se muestra un render del resultado final.

Este es el fin de este tutorial.